期刊文献+

两类奇异临界椭圆方程组解的存在性

Existence of Solutions for Two Singular Critical Elliptic Systems
下载PDF
导出
摘要 研究了两类非线性奇异临界椭圆方程组,运用Schwartz对称化方法、集中紧性原理和山路引理,证明了全空间中的一类齐次临界椭圆方程组基态解的存在性和有界区域上的一类带有线性扰动项的临界椭圆方程组正解的存在性. In this paper, two classes of nonlinear singular critical elliptic systems were studied. The Schwartz symmetrization, the concentration compactness principle and the Mountain Pass lemma were used to prove the existence of ground state solutions to a homogeneous critical elliptic system in the whole space and the existence of positive solutions to a critical elliptic system with linear perturbations in bounded domain.
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2016年第4期126-131,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(11601530)
关键词 奇异临界椭圆方程组 解的存在性 集中紧性原理 山路引理 singular critical elliptic system existence of solution concentration compactness principle Mountain Pass lemma
  • 相关文献

参考文献1

二级参考文献16

  • 1Cao D,Han P. Solutions to critical elliptic equations with multi-singular inverse square potentials [J]. J Differential Equations,2006,224(2):332-372. 被引量:1
  • 2Cao D,Peng S. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J]. J Differential Equations, 2004,193 (2) : 424- 434. 被引量:1
  • 3Ekeland I,Ghoussoub N. Selected new aspects of the calculus of variations in the large[J]. Bull Amer Math Soc, 2002,39 (1) : 207-265. 被引量:1
  • 4Felli V, Terracini S. Elliptic equations with multisingular inverse-square potentials and critical nonlinearity [ J ]. Comm Partial Differential Equations, 2006,31 (2) : 469-495. 被引量:1
  • 5Felli V, Terracini S. Nonlinear Schrodinger equations with symmetric multi-polar potentials [J]. Cale Var Partial Differential Equations ,2006,27(1) :25-58. 被引量:1
  • 6Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J Differential Equations, 2001, 177 (2): 494- 522. 被引量:1
  • 7Jannelli E. The role played by space dimension in elliptic critical problems [ J ]. J Differential Equations, 1999,156 (2) : 407-426. 被引量:1
  • 8Kang D, Peng S. The existence of positive solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Appl Math Letters, 2004, 17 (4) : 411-416. 被引量:1
  • 9Kang D, Peng S. Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Nonlinear Anal ,2004,56(4) : 1 151-1 164. 被引量:1
  • 10Kang D,Peng S. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents[J]. Israel J Math, 2004,143 (5) : 281-297. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部