期刊文献+

基于Bézier提取的三维等几何分析

Three-dimensional isogeometric analysis based on Bézier extraction
下载PDF
导出
摘要 等几何分析(IGA)将非均匀有理B样条(NURBS)函数作为有限元形函数,具有几何精确、高阶连续和精度高等优点。与常规有限元法C0连续的形函数不同,高阶IGA基函数不是定义在一个单元上,而是跨越由几个单元组成的参数空间,因而编程复杂且无法嵌入现有的有限元法计算框架及相应算法。本文建立了基于Bézier提取的三维IGA,将NURBS函数分解成伯恩斯坦多项式的线性组合,从而实现把NURBS单元分解为C0连续Bézier单元,这些单元与Lagrange单元相似,使IGA的实现和常规有限元一样,以便将IGA分析嵌入现有的有限元软件中。两个三维算例结果表明,基于Bézier提取的IGA和传统IGA的收敛性和精度相同。 Isogeometric analysis (IGA) uses non-uniform rational B-splines (NURBS) functions as shape functions of finite element method (FEM), so that IGA has some advantages such as exact geometrical representation, high-order continuity and high accuracy. Unlike shape functions in FEM is C0-continuity, in high-order IGA,the basis functions are not confined to one element, but span a global domain, so the programming is complicated and which cannot be embedded into existing FEM framework. In this paper, a three-dimensional IGA based on Bezier extraction is developed,which decomposes NURBS functions to a set of Bernstein polynomials, thus Co continuous Bezier elements, which are similar to Lagrange elements,can be obtained. Hence,the implementation of IGA is similar to that of conventional FEM, so that IGA can be embedded in existing FEM software easily. Two examples are given to illustrate the IGA based on Bezier extraction has the same convergence rate and accuracy as those in the conventional IGA.
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第6期813-818,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51179063)资助项目
关键词 等几何分析 NURBS Bezier提取 伯恩斯坦多项式 有限元法 Isogeometric analysis NURBS Bezier extraction Bernstein polynomial ~ FEM
  • 相关文献

参考文献2

二级参考文献22

  • 1Zienkiewicz O C, Taylor R L, Zhu J Z. The Finite El- ement Method: Its Basis g Fundamentals (6th Edi- tion) [M]. Butterworth Heinemann: Oxford, MA, 2005. 被引量:1
  • 2Belytsehko T, Kronggauz Y, Organ D, Fleming M. Meshless methods: an overview and recent develop- ments[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139 .. 3-47. 被引量:1
  • 3Li S, Liu W K. Mesh free Particle Methods [M]. Springer-Verlag, 2004. 被引量:1
  • 4Hughes T J R,Cottrell J A,Bazilevs Y. Isogeometric analysis : CAD, finite elements, NURBS exact geome- try and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 4135-4195. 被引量:1
  • 5Hughes T J R, Reali A,Sangalli G. Duality and uni- fied analysis of discrete approximations in structural dynamics and wave propagation: comparison of p- method inite elements with k-method NURBS[J]. Computer Methods in Applied Mechanics and Engi- neering ,2008,197:4104-4124. 被引量:1
  • 6G6mez H,Calo V M,Bazilevs Y,Hughes T J R. Iso- geometric analysis of the Cahn-Hilliard phase-field model[J]. Computer Methods in Applied Mechanics and Engineering, 2008,197 : 4333-4352. 被引量:1
  • 7Chen J S,Wang H P. New boundary condition treat- ments in meshless computation of contact problems [J]. Computer Methods in Applied Mechanics and Engineering, 2000,187 : 441-468. 被引量:1
  • 8Wang H P,Wang D. Efficient meshfree computation with last treatment of essential boundary conditions for industrial applications[J]. ASCE Journal of En- gineering Mechanics, 2009,135 : 1147-1154. 被引量:1
  • 9Rogers D F. An Introduction to NURBS with His- torical Perspective[M]. Academic Press, 2001. 被引量:1
  • 10Timoshenko S P,Goodier J N. Theory of Elasticity (3rd edn) [M]. McGraw: New York, 1970. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部