期刊文献+

半被动双足机器人的行走控制及设计 被引量:1

Walking Control and Design Implementation of a Quasi-passive Biped Robot
下载PDF
导出
摘要 研究了半被动双足机器人的平面稳定行走控制及设计实现。采用欧拉-拉格朗日方法及动量矩守恒定律分别得到摆动腿摆动阶段的动力学方程及碰撞前后的切换模型。每个行走周期初始,在支撑腿脚后跟施加脉冲推力作为行走的动力源,通过求解摆动腿摆动阶段的线性化方程,获得脉冲推力的初值,采用二阶迭代学习控制算法对脉冲推力进行修正。在理论分析的基础上,分别在Matlab环境下及双足机器人实验装置中进行了仿真及实验研究。仿真及实验结果表明:和一阶迭代学习控制算法相比,文中所提算法具有更快的收敛速度,可以实现双足机器人平面上的稳定周期行走,具有稳定的极限环。且雅可比矩阵的特征值均位于单位圆内,满足系统的稳定条件。 The stable walking control and design implementation of a quasi-passive biped robot on level ground is studied. The equation of motion for the swing phase and the transition rule at heel-strike collision are derived by using the Euler-Lagrange method and the conservation of moment of momentum,respectively. An impulsive push is applied to the stance leg preferably immediately before heel-strike. The initial toe-off impulse is generated by solving the linearized differential equation of the swinging phase. Then the second-order iterative learning control( ILC) algorithm is used to revise the value of the toe-off impulse. Based on theoretical analysis,computer simulations in Matlab and biped robot experimental tests are carried out to validate the effectiveness of the proposed algorithm. Simulation and experimental results show that the proposed algorithm can converge at a faster rate compared to the first-order ILC algorithm,it can realize the stable walking control on level ground for a biped robot,the stable limit circle is obtained and all the eigenvalues of the Jacobian matrix are inside the unit circle,so the stability condition is satisfied.
出处 《实验室研究与探索》 CAS 北大核心 2016年第11期47-50,55,共5页 Research and Exploration In Laboratory
基金 国家自然科学基金资助项目(11172047) 北京信息科技大学教改项目(2016JGYB09)
关键词 双足机器人 半被动行走 脉冲控制 二阶迭代学习控制 biped robot quasi-passive walking impulsive control second-order iterative learning control
  • 相关文献

参考文献3

二级参考文献31

  • 1付成龙,陈恳.五杆四驱动平面双足机器人动态步态规划与非线性控制[J].机器人,2006,28(2):206-212. 被引量:8
  • 2Hirai K, Hirose M, Haikawa Y, et al. Development of Honda humanoid robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1998. 1321-1326. 被引量:1
  • 3McGeer T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82. 被引量:1
  • 4Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307 (5712): 1082-1085. 被引量:1
  • 5Asano F, Yamakita M, Kamamichi N, et al. A novel gait generation for biped walking robots based on mechanical energy constraint[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 565-573. 被引量:1
  • 6Ono K, Takahashi R, Shimada T. Self-excited walking of a biped mechanism[J]. The International Journal of Robotics Research, 2001, 20(12): 953-966. 被引量:1
  • 7Goswami A, Espiau B, Keramane A. Limit cycles in a passive compass gait biped and passivity-mimicking control laws[J]. Autonomous Robots, 1997, 4(3): 273-286. 被引量:1
  • 8詹佩璇.神经生物学[M].台北:合记图书出版社,2004.121-141. 被引量:1
  • 9Basmajian J V. The human bicycle: An ultimate biological convenience[J]. Orthopedic Clinics of North America, 1976, 7(4): 1027-1029. 被引量:1
  • 10Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers [J]. Science, 2005, 307(5712): 1082-- 1085. 被引量:1

共引文献27

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部