期刊文献+

具有非单调功能响应及阶段结构的时滞捕食与被捕食系统的概周期性

Almost periodicity of a delayed predator-prey system with stage structure and non-monotonous functional response
下载PDF
导出
摘要 研究一类捕食者和被捕食者都具有阶段结构,功能响应是非单调函数的时滞捕食与被捕食系统的概周期性,利用Brouwer不动点定理获得了系统存在概周期解的条件。 The almost periodicity of a delayed predator-prey system with stage structure for both predator and prey, and with non-monotonous functional response is studied. Based on Brouwer fixed point Theorem, some sufficient conditions are obtained for the existence of an almost periodic solution of the system.
作者 周铁军 向美红 刘迎媛 ZHOU Tiejun XIANG Meihong LIU Yingyuan(College of Science, Hunan Agricultural University, Changsha 410128, China)
出处 《邵阳学院学报(自然科学版)》 2016年第4期5-10,共6页 Journal of Shaoyang University:Natural Science Edition
基金 湖南省科技计划项目(2015JC3101) 湖南省研究生创新培养专项(CX2015B265)
关键词 概周期解 捕食与被捕食 阶段结构 非单调功能响应 almost periodicity predator-prey stage structure non-monotonous functional response
  • 相关文献

参考文献3

二级参考文献15

  • 1余长春,李培峦,曾宪武.具有IV类功能反应的非自治捕食系统的持续性和周期解[J].数学杂志,2006,26(6):619-622. 被引量:10
  • 2Wang Linlin,Li Wantong.Existence and global stability of positive periodic solutions of a predator-prey system with delays[J].Appl.Math.Comput,2003,146:167-185. 被引量:1
  • 3Yang Xitao.Uniform persistence for a predator-prey system with delays[J].Appl.Math.Comput,2006,173:523-534. 被引量:1
  • 4Francisco Montes de Oca,Miguel Vivas.Extinction in a two dimensional Lotka-Volterra system with infinite delay[J].Nonlinear Anal.Real Word Appl,2006,7(5):1042-1047. 被引量:1
  • 5Zhu Hongguang,Wang Ke,Li Xiaojian.Existence and global stability of positive periodic solutions for predator-prey system with infinite delay and diffusion[J].Nonlinear Anal.Real Word Appl,2007,8:872-886. 被引量:1
  • 6Cui Jingan,Takeuchib Y.A predator-prey system with stage structure for the prey[J].Math.Comput.Modelling,2006,44:1126-1132. 被引量:1
  • 7Zhao Xiaoqiang.Dynamical Systems in Population Biology[M].Springer-Verlag,New York,2003. 被引量:1
  • 8Xia Y H, Cao J D, Cheng S S. Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses [J]. Applied Mathematical Modelling, 2007, 31(9): 1 947-1 959. 被引量:1
  • 9Yang W S, Li X P, Bai Z J. Permanence of periodic Holling type-IV predator-prey system with stage structure for prey [J]. Mathematical and Computer Modelling, 2008, 48: 677-684. 被引量:1
  • 10Xue Y K, Duan X F. The dynamic complexity of a HoUing type-IV predator-prey system with stage structure and double delays [J]. Discrete Dynamics in Nature and Society, 2011, Article ID 509871:1-19. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部