期刊文献+

一类时滞捕食系统的Hopf分岔

Hopf Bifurcation for a Predator-prey System with Delay
下载PDF
导出
摘要 针对一类具有时滞和功能响应的捕食者-食饵系统,通过讨论对应特征方程的根的分布,得到了存在Hopf分岔的充分条件. The delayed predator-prey system with functional responses is investigated. By analyzing the distribution of roots of the corresponding characteristic equation, sufficient conditions for existence of Hopf bifurcation are obtained.
出处 《三峡大学学报(自然科学版)》 CAS 2008年第6期103-104,共2页 Journal of China Three Gorges University:Natural Sciences
基金 安徽省教育厅自然科学重点项目(2005KJ030ZD)
关键词 捕食系统 HOPF分岔 周期解 predator-prey system Hopf bifurcation periodic solutions
  • 相关文献

参考文献6

  • 1Ruan Shigui, Xiao Dongmei. Global Analysis in a Predator-prey System with Nonmonotonic Functional Response[J]. SIAM J. Appl. Math. 2001, 61(4): 1445- 1472. 被引量:1
  • 2Chen Yuming. Multiple Periodic Solutions of Delayed Predator-prey Systems with Type IV Functional Responses[J]. Nonlinear Analysis: Real World Applications, 2004, 5:45-53. 被引量:1
  • 3Hu Xiaoling, Liu Guirong, Yan Jurang. Existence of Multiple Positive Periodic Solutions of Delayed Predator- Prey Models with Functional Responses[J]. Computers and Mathematics with Applications, 2006, 52: 1453- 1462. 被引量:1
  • 4别群益,赵琼.一个具扩散的捕食模型非常数正解的存在性[J].三峡大学学报(自然科学版),2007,29(6):565-567. 被引量:1
  • 5Ruan Shigui, Wei Junjie. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays[J]. Dyna Cont, Disc Impu Syst Seri A, 2003,10 : 863-874. 被引量:1
  • 6Hassard Brian, Kazarinoff Nicholas, Wan Yieh-Hei. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1980. 被引量:1

二级参考文献6

  • 1郭坤,潘家齐.具时滞和Holling功能性反应的捕食-被捕食系统的稳定性及Hopf分支[J].黑龙江大学自然科学学报,2006,23(4):502-505. 被引量:3
  • 2Sugie J, Katayama. Global Asymptotic of a Predatorprey System of Holling type[J]. Nonlinear Anal, 1999, 38:105-121. 被引量:1
  • 3Sugie J. Uniqueness of Limit Cycles in a Predator-prey System with Holling type Functional Response[J]. Appl Math, 2000,3(9) :577-590. 被引量:1
  • 4Lou Y, Ni W M. Diffusion vs Cross-diffusion: an Elliptic Approach[J]. J. Differential Equations, 1999, 154: 157-190. 被引量:1
  • 5Lin C S, Ni W M, Takagi I. Large Amplitude Stationary Solutions to a Chemotaxis System[J]. J. Differential Equations, 1988,72:1-27. 被引量:1
  • 6Pang P Y H, Wang M X. Qualitative Analysis of a Ratio-dependent Predator-prey System with Diffusion[J]. Proc. Roy. Soc. Edinburgh A, 2003,133(4) :919-942. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部