期刊文献+

基于Kalman和双级联随机森林的在线目标跟踪算法

Online object tracking algorithm based on Kalman and cascaded random forest classifier
下载PDF
导出
摘要 针对传统的基于检测的在线目标跟踪算法容易产生跟踪漂移的现象,提出了一种新的在线目标跟踪算法。以基于主方向模板特征的双级联随机森林分类器作为检测器,卡尔曼滤波器作为跟踪器。首先利用卡拉曼算法跟踪目标,然后以跟踪的目标位置为中心向外扩展一定的范围作为双级联随机森林分类器的检测区域,利用全局随机森林分类器和局部随机森林分类器进行目标检测,并将检测结果作为Kalman跟踪算法下一帧的观测值。实验结果显示,提出的算法在跟踪大小420×320的图像时,跟踪速度达到24.3 f/s(帧/秒),目标中心位置误差在30 pixel时,算法准确率可达到80%以上。 As the traditional online tracking algorithm based on detection is easy to cause the tracking drift, a new online target tracking algorithm is proposed in this paper, where the Cascaded Random Forest with Dominant Orientation Templates is used as a detector, while the Kalman filter is the tracker. First, the Kalman filter is used to track the target, then the holistic detector and patch-based detector is applied to detect the object with the track result as the area center, and the detecting result is used as next frame' s observed value of Kalman tracking algorithm. The experimental results show that in the video sequence of 320 pixel × 240 pixel, the speed can keep in 24.3 frame/s, and the object center position error is in 30 pixel, while the accuracy can reach above 80%.
出处 《电视技术》 北大核心 2016年第12期23-27,共5页 Video Engineering
基金 国家自然科学基金项目(61301233)
关键词 视觉跟踪 KALMAN滤波 主方向模板 级联随机森林分类器 visual tracking Kalman filter DOT cascaded random forest
  • 相关文献

参考文献3

二级参考文献38

  • 1BradskiG,KaeblerA.学习OpenCV(中文版)[M].于仕琪,刘瑞帧,译.北京:清华大学出版社,2009. 被引量:18
  • 2王江涛,杨静宇.遮挡情况下基于Kalman均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220. 被引量:30
  • 3KALAL Z,MIKOLAJCZYK K, MATAS J. Face-TLD :Tracking-learn- ing-detection applied to faees[C]//Proc. ICIP 2010. Hong Kang: IEEE Press,2010 : 3789-3792. 被引量:1
  • 4VIOLA P, PLATI" J, ZHANG C. Multiple instance Boosting for ob- ject detection[J].Advances in Neural Information Processing Sys- tems, 2006(18) : 1417-1424. 被引量:1
  • 5CALONDER M, LEPETIT V, FUA P. Fast kyepoint recognition us- ing random ferns[J]. IEEE Trans. Pattern Analysis and Machine In- telligence, 2010,32 ( 3 ) : 448-461. 被引量:1
  • 6BABENKO B,YANG M H, BELONGIE S.VisUAL tracking with on- line multiple instance learning[C]//Proc. CVPR 2009.[S.1.]: IEEE Press, 2009: 983-990. 被引量:1
  • 7QI Zhiquan, XU Yitian, WANG Laisheng. Online multiple instance Boosting for object detection[J]. Neurocomputing, 2011,74 (10) : 1769-1775. 被引量:1
  • 8GRABNER H, BISCHOF H. On-line Boosting and vision[C]//Proc. CVPR 2006. New York :IEEE Press, 2006: 260-267. 被引量:1
  • 9李雅林,张化祥,张顺.基于近邻加权及多示例的多标记学习改进算法[EBIOL].[2012-10-28].http://www.cnki-net/kcms/detail/11.2127.rP.20120801.1653.030.html. 被引量:1
  • 10GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line Boosting for robust tracking [C]// Proc. European Conf on Computer Vision.Berlin: Springer, 2008 : 234-247. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部