期刊文献+

卷积神经网络与时空上下文结合的目标跟踪算法 被引量:1

A Target Tracking Algorithm Combining Convolution Neural Network with Spatio Temporal Context
下载PDF
导出
摘要 本文所提算法是一种卷积神经网络与时空上下文结合的目标跟踪算法。将卷积神经网络算法融入时空上下文算法框架下,使得跟踪系统整体的鲁棒性有显著提高。引入Kalman滤波来处理目标被严重遮挡时,跟踪框容易漂移的问题。此外,整个跟踪系统采取由粗到精的双重目标位置定位方式,由时空上下文算法实现目标初定位,由卷积神经网络进行目标位置的精确定位。经实验验证,算法不仅稳定性和鲁棒性较好,而且实时性的条件也基本满足。 In this paper, an algorithm of the target tracking combining convolution neural network with the temporal and spatial context is proposed. In the framework of the context-based algorithm, the convolutional neural network algorithm is integrated to improve the stability and robustness of the tracking system. The Kalman filter is introduced to deal with the problem that the target is obscured. In addition, the whole tracking system adopts a coarse-to-fine target location method, and the target localization is achieved by the temporal and spatial context algorithm, and the target location is accurately located by the convolution neural network. Experimental results show that the proposed algorithm is stable and robust for real-time performance.
出处 《红外技术》 CSCD 北大核心 2017年第8期740-745,共6页 Infrared Technology
关键词 目标跟踪 时空上下文 卷积神经网络 target tracking, spatio temporal context, convolution neural network
  • 相关文献

参考文献3

二级参考文献30

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2林明秀,刘伟佳,徐心和.基于模板匹配的多模式车辆跟踪算法[J].系统仿真学报,2007,19(7):1519-1522. 被引量:13
  • 3王江涛,杨静宇.遮挡情况下基于Kalman均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220. 被引量:30
  • 4K Fukunaga, L D Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Transaction on Information Theory (S0018-9448), 1975, 21(1): 32-40. 被引量:1
  • 5D Comaniciu, V Ramesh, P Meer. Kernel-based object tracking [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence (S0162-8828), 2003, 25(5): 564-577. 被引量:1
  • 6D Comaniciu, P Meer. Mean shift: A robust approach toward feature space analysis [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence (S0162-8828), 2002, 24(5): 603-619. 被引量:1
  • 7R Collins. Mean-shift blob tracking through scale space [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume Ⅱ. Washington: IEEE, 2003: 234-240. 被引量:1
  • 8G R Bradski. Computer vision face tracking as a component of a perceptual user interface [C]// IEEE Workshop on Applications of Computer Vision. Washington: IEEE, 1998: 214-219. 被引量:1
  • 9A Elgammal, R Duraiswami, L Davis. Probabilistic tracking in joint feature-spatial spaces [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume Ⅰ. Washington: IEEE, 2003: 781-788. 被引量:1
  • 10Changjiang Yang, Ramani Duraiswami, Larry Davis. Efficient Mean-Shift Tracking via a New Similarity Measure [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume Ⅰ. Washington: IEEE, 2005: 176-183. 被引量:1

共引文献66

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部