期刊文献+

改进视觉背景提取ViBe算法的目标检测 被引量:7

Improved visual background extractor Vi Be algorithm for detecting objects
下载PDF
导出
摘要 针对视觉背景提取Vi Be算法消除鬼影时间长、对动态场景适应性弱、对光线变化敏感等问题,提出一种适应性强的改进算法。在背景模型初始化时,通过对多帧图像随机选取像素点并累加判断后,形成与实际吻合度达86.78%的背景模型;提出衡量背景动态程度因子,根据其值获取图像的自适应聚类、更新阈值,提高了算法在动态背景下的检测精度;考虑到光线变化对检测结果的影响,提出衡量图像亮度因子并应用于聚类检测,增强了算法对光照的鲁棒性。与其他算法进行对比实验后表明,改进算法在不同场景中能有效检测目标物体,具有较好的适应性。 As the ViBe algorithm has some ghost which will be a long time, weak adaptability to dynamic scene and strong sensibility to light changes, it proposes an improved algorithm which is more adaptable in this paper. In the background model initialization, the background model with the actual degree of agreement reaches 86.78%, it is formed after the multi frame images are randomly selected and accumulated judgment. Then it puts forward the measure background dynamic degree factor, according to its value, it can obtain the image’s adaptive clustering and threshold update, in order to improve the detection accuracy in complex background. Considering the effect of the change of light on the detection results, it puts forward the image brightness factor and uses it in the cluster detection and increases the robustness of the algorithm to the illumination. Compared with other algorithms, improved algorithm can detect target object accurately in different scenarios and has better adaptability in kinds of scenes.
作者 齐悦 曹锐
出处 《计算机工程与应用》 CSCD 北大核心 2016年第23期203-207,共5页 Computer Engineering and Applications
基金 虚拟现实技术与系统国家重点实验室开放课题(No.BUAAVR-15KF-16) 山西省自然科学基金(No.2014021022-5) 山西省教育厅高等学校科技创新项目(No.2015124)
关键词 背景建模 目标检测 鬼影 动态程度 图像亮度变化 background modeling object detection ghost dynamic degree image brightness variations
  • 相关文献

参考文献5

二级参考文献42

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2徐胜男,杨承磊,李振华.一种时间序列图像自动配准算法[J].计算机工程,2006,32(11):228-230. 被引量:1
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4Brutzer S,Hoferlin B, Heidemann G.Evaluation of back- ground subtraction techniques for video surveillance[C]// IEEE Conference on Computer Vision and Pattern Rec- ognition ( CVPR ), 2011,6 : 1937-1944. 被引量:1
  • 5Stauffer C, Grimson W.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Conf Computer Vision and Pattern Recognition.Piscataway, NJ : IEEE, 1999. 被引量:1
  • 6Elgammal. Harwood D, Davis L.Non-parametric model for background subtraction[C]//LNCS 1834.Berlin: Springer. 2000 : 751-767. 被引量:1
  • 7Kim K, Chalidabhongse T H, Harwood D. et al.Background modeling and subtraction by codebook construction[C]// Proc of the IEEE Int Conf on Image Processing.Piscataway, NJ : I EEE, 2004 : 3061-3064. 被引量:1
  • 8Kim K, Chalidabhongse T H, Harwood D. et al.Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005,11 ( 3 ) : 167-256. 被引量:1
  • 9Barnich O,Droogenbroeek M V.Vibe:a powerful random technique to estimate the background in video sequences[C]// Proceeding of ICASSP 2009.Taipei: IEEE Computer So- ciety Press, 2009 : 945-948. 被引量:1
  • 10Horprasert T, Harwood D, Davis for real-time robust background detection[C]//IEEE Frame-Rate Kerkyra,Greece, 1999. 被引量:1

共引文献86

同被引文献49

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部