期刊文献+

一种快速消除鬼影的目标检测算法 被引量:3

AN OBJECT DETECTION ALGORITHM WITH FAST GHOST ELIMINATION
下载PDF
导出
摘要 针对运动目标检测ViBe算法在执行过程中的鬼影以及背景抖动问题,提出一种可以快速消除鬼影的目标检测算法。提出背景值定向传播以及计算闪烁因子的优化算法,将背景值快速填充到周边鬼影区域的背景集合中,从而快速消除鬼影并消除动态背景和相机抖动的影响,避免使用复杂的特征点检测算法处理抖动问题。通过快速滤波与形态学操作可以去除噪点并提高前景的完整性。经过理论分析以及实验对比,结果表明,该算法能够快速消除鬼影,在相机抖动或动态背景的情况下有更好的目标检测效果,算法的运行速度相比部分主流算法更加快速高效。 To eliminate the ghost and background jitter problem in moving object detection based on ViBe algorithm,we proposed an improved object detection algorithm with fast ghost elimination.An optimization algorithm for directional propagation of background values and calculation of scintillation factor was proposed,which could quickly fill the background values into the background set of surrounding ghost regions.Thus it could rapidly eliminate the ghost and remove the influence of camera jittering and dynamic background.The complex feature point detection algorithm was avoided to deal with the jitter problem.We used fast filtering and morphological operations to remove noise and improve the integrity of the foreground.The theoretical analysis and the experimental results show that the improved ViBe algorithm can quickly eliminate ghosts and has better recognition results in the case of camera jitter or dynamic background.The proposed algorithm runs faster and more efficiently than some main popular algorithms.
作者 路霄汉 王志君 梁利平 Lu Xiaohan;Wang Zhijun;Liang Liping(Institute of Microelectronics,Chinese Academy of Science,Beijing 100029,China;School of Electrical,Electronics and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100029,China)
出处 《计算机应用与软件》 北大核心 2019年第10期101-106,129,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61471354)
关键词 运动目标检测 ViBe 鬼影消除 抖动处理 Moving object detection ViBe Ghost elimination Jitter process
  • 相关文献

参考文献7

二级参考文献48

  • 1李刚,曾锐利,林凌,王蒙军.基于帧间颜色梯度的背景建模[J].光学精密工程,2007,15(8):1257-1262. 被引量:7
  • 2王伟嘉,刘辉,沙莉,刘鑫,姜华.滞留与偷窃物体实时检测与分类算法[J].计算机应用,2007,27(10):2591-2594. 被引量:9
  • 3Avidan S.Support vector tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(8):1064-1072. 被引量:1
  • 4Learnedmiller E G,Sevillalara L.Distribution fields for tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition,2012:1910-1917. 被引量:1
  • 5Oron S,Barhillel A,Levi D,et al.Locally orderless tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition,2012:1940-1947. 被引量:1
  • 6Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,1999:246-252. 被引量:1
  • 7Tian Y L,Lu M,Hampspur A.Robust and Efficient Foreground Analysis for Real-time Video Surveillance[C]//Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CVPR 2005,2005:1182-1187. 被引量:1
  • 8Li X,Zhang C,Zhang D.Abandoned objects detection using double illumination invariant foreground masks[C]//20thinternational Conference on Pattern Recognition,2010:241-250. 被引量:1
  • 9吴亮,周东翔,范才智,蔡宣平.基于直方图匹配的鬼影检测算法[J].计算机工程与科学,2008,30(7):57-60. 被引量:7
  • 10谢凡,秦世引.基于SIFT的单目移动机器人宽基线立体匹配[J].仪器仪表学报,2008,29(11):2247-2252. 被引量:15

共引文献73

同被引文献37

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部