期刊文献+

基于BL4.0 iBeacon技术的室内定位算法研究 被引量:4

Research on Indoor Positioning Algorithm Based on BL4.0 iBeacon Technology
下载PDF
导出
摘要 通过BL4.0iBeacon技术进行室内定位,分析了最邻近值算法和贝叶斯算法的不足,提出一种将上述两者优点进行融合的算法.首先,使用最邻近值算法的优选区域限定,缩小贝叶斯算法对指纹库的搜索范围,然后,采用贝叶斯概率法计算各个iBeacon节点的信号强度值集合在指纹库中每一位置参考点对应的条件概率值,概率最大的点就是待测点的预测位置.实验结果表明,使用该算法计算的坐标准确度比较高,坐标误差较小,能明显提高室内定位的精度. BL4.0iBeacon technology is introduced for indoor positioning.This paper analyzes the shortcoming of two traditional positioning algorithms:KNN algorithm and Bayesian algorithm,then proposes a combined algorithm of these two algorithms.First KNN algorithm is used to obtain the position set of which the distance to the position to be measured is smaller,and thus narrow search range of fingerprint database for Bayesian algorithm.After that match probability is calculated using Bayesian probabilistic algorithms for the selected position set.The biggest probability of matching point is exactly the predicted position of the target point.The experiment results verify that the accuracy of coordinate with the proposed algorithm is relatively high,and coordinate error is small,so as to improve indoor positioning accuracy significantly.
出处 《杭州电子科技大学学报(自然科学版)》 2016年第5期1-5,21,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省自然科学基金资助项目(LY15F030018 LY16F030004)
关键词 室内定位 指纹库 蓝牙4.0 iBeacon indoor positioning fingerprint database bluetooth 4.0 iBeacon
  • 相关文献

参考文献3

二级参考文献11

  • 1宋浩然,廖文帅,赵一鸣.基于加速度传感器ADXL330的高精度计步器[J].传感技术学报,2006,19(4):1005-1008. 被引量:35
  • 2HARLE R. A Survey of Indoor Inertial Positioning Sys- terns for Pedestrians [ J ]. IEEE Transactions on Commu- nications Surveys & Tutorials. 2013, 15 ( 3 ) : 1281- 1293. 被引量:1
  • 3IBARRA B, RAMIREZ C. Pedestrian Dead Reckoning towards Indoor Location Based Applications [ C ]. Interna- tional Conference on Electrical Engineering Computing Science and Automatic Control. 2011, 1 (6) : 26-28. 被引量:1
  • 4LI W L, ILTIS. A Smartphone Localization Algorithm using RSSI and Inertial Sensor Measurement Fusion [ C ]. IEEE Global Communications Conference. 2013, 9 (13) : 3335 -3340. 被引量:1
  • 5YUNG F H, et al. Performance of an MMSE Based In- door Localization with Wireless Sensor Networks[ C]. In- ternational Conference on Networked Computing and Ad- vaneed Information Management, 2010. 被引量:1
  • 6HARA S, ANZAI D. Use of a Simplified Maximum Like- lihood Function in a WLAN-Based Location Estimation [ C ]. IEEE Conference on Wireless Communications and Networking, 2009. 被引量:1
  • 7XIANGLING Z, CHANGXU W. Modeling Pedestrian Crossing Paths at Unmarked Roadways [ J ]. IEEE Trans- actions on. Intelligent Transportation Systems. 2013, 1438-1448. 被引量:1
  • 8ROBERTSON P, ANGERMANN M, KRACH B. Simul- taneous Localization and Mapping for Pedestrians using Only Footmounted Inertial Sensors [ C ]. 11 th Internation- al conference on Ubiquitous computing, 2009. 被引量:1
  • 9JIMENEZ A R, SECO F, PRIETO C, et al. A Compari- son of Pedestrian Dead-Reckoning Algorithms using a Low-cost MEMS IMU [ C ]. IEEE International conference on Intelligent Signal Processing Symposium. 2009:37-42. 被引量:1
  • 10王勇.MEMS技术发展及应用优势[J].飞航导弹,2011(5):85-89. 被引量:14

共引文献31

同被引文献26

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部