期刊文献+

燃气透平叶片3种出气边冷却结构中流动与传热性能的比较 被引量:4

Comparison of the Flow and Heat Transfer Performance of Three Types of Trailing Edge Cooling Structure in Blades of a Gas Turbine
原文传递
导出
摘要 本研究通过流热耦合计算和实验验证,比较了圆柱排孔与两种劈缝的出气边冷却结构,在不同雷诺数和冷气质量流率下的流动与传热性能。结果表明:圆柱排孔流阻偏高,受供气压力限制,冷气流量不足,冷却效果下降,造成出气边烧蚀。叶片出气边压力面开设劈缝结构降低流阻,提高了冷气流量。劈缝内采用弦向肋和扰流柱结构强化换热,提高冷却效果。在相同冷气流量下,劈缝结构所需的流动压差明显下降,叶栅叶片的尾迹宽度也减小,对降低下游叶栅的流动损失和表面传热是有利的。 Through a flow and heat coupling calculation and test verification,compared were the flow and heat transfer performance of the trailing edge cooling structure with cylindrical holes in a row and two types of cutback at various Reynolds numbers and cooling air mass flow rates. It has been found that the cylindrical holes in a row have an excessively high flow resistance and due to the limitation of the air supply pressure,the cooling air flow rate is excessively low and the cooling effectiveness is not good enough,leading to erosion at the trailing edge at a very high temperature. To provide a blade with a cutback film cooling structure at the trailing edge on the pressure surface can lower the flow resistance and enhance the cooling air flow rate. To adopt the chord-wise rib and pinfin cooling structure inside the slot can intensify the heat exchange and improve the cooling efficiency. At a same cooling air flow rate,the pressure difference required by the flow in the cutback cooling structure will notably drop and the width of the wake of blades in a cascade will also become small,thus favorable for reducing the flow losses and surface heat transfer in cascades at the downstream.
出处 《热能动力工程》 CAS CSCD 北大核心 2016年第11期32-37,共6页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金资助项目(51276116)
关键词 圆柱排孔 劈缝 冷却效率 尾迹结构 cylindrical holes in a row cutback cooling efficiency wake trace configuration
  • 相关文献

参考文献1

二级参考文献16

  • 1杨世铭,陶文铨.传热学:第四版[M].北京:高等教育出版社,2006. 被引量:5
  • 2Chyu M K, Sin C S. Recent Advances of Internal Cooling Tech- niques for GasTurbine Airfoils [ J ]. Journal of Thermal Science and Engineering Applications, 2013 ( 5 ) :021008 - 1 - 12. 被引量:1
  • 3Han J C, Sandip Duffa, Srinath V E. Gas Turbine Heat Transfer And Cooling Technology [ M ]. New York : Taylor&Francis, 2000 : 11 -15. 被引量:1
  • 4Hylton L D, Milhec M S, Turner E R, et al. Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes [ J]. NASA, 1983, CR 168015:1 - 206. 被引量:1
  • 5York W D, Leylek J H. Three dimensional conjugate heat transfer simulation of an in temally cooled gas turbine vane [ C ]. ASME Conference Proceedings, Atlanta, Georgia, USA : ASME ,2003. 被引量:1
  • 6Facchini B, Magi A, Greco A S D. Conjugate heat transfer simu- lation of a radially cooled gas turbine vane [ C ]. ASME Conference Proceedings, Vienna, Austria: ASME,2004. 被引量:1
  • 7Luo L, and Razinski E H. Conjugate Heat Transfer Analysis of a Cooled turbine vane using the V2F Turbulence Model[ J ]. Joumal of Turbomachinery, 2007,129:773 - 781. 被引量:1
  • 8Takahashi T, Watanabe K, Sakai T. Conjugate heat transfer analy- sis of a rotor blade with rib-roughened internal cooling passages [ C ]. ASME Conference Proceedings, Reno-Tahoe, Nevada, USA : ASME ,2005. 被引量:1
  • 9AN Baitao, LIU Jianjun,JIANG Hongde. Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a tur- bine stage [ C ]. ASME Conference Proceedings, Berlin, Germany: ASME,2008. 被引量:1
  • 10AN BaitaO,LIU Jianjun,JIANG Hongde. Combined unsteady effects of hot streak and trailing edge coolant ejection in a turbine stage[ C ]. ASME Conference Proceedings, Orlando, Florida, USA:ASME,2009. 被引量:1

同被引文献40

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部