期刊文献+

改进的基于整数拆分形式标量乘快速算法 被引量:4

Improved Fast Scalar Multiplication Algorithm Based on Signed Integer Splitting Form
下载PDF
导出
摘要 标量乘运算是椭圆曲线密码的关键运算。为有效提高椭圆曲线密码标量乘法的运算效率,给出了一种改进的带符号整数拆分形式标量乘快速算法。首先通过对标量进行带符号的整数拆分形式编码,然后将标量乘运算转化为由一组椭圆曲线上的点累加和形式进行计算,同时在预计算阶段采用更为高效的折半运算代替倍点运算。算法性能分析的结果表明:与已有的基于整数拆分形式标量乘快速算法相比,新算法的能够大幅提升运算效率,在应用椭圆曲线密码的各种系统中具有较好的实际应用价值。 The scalar multiplication is the key operation in elliptic curve cryptography.To improve the efficiency of scalar multiplication effectively,a novel improved fast scalar multiplication algorithm based on signed integer splitting algorithm for elliptic curve cryptography is proposed.Firstly,the scalar is coded by signed integer splitting form,and then the scalar multiplication is transformed into a accumulate sum form by a group of points in elliptic curve.Meanwhile,point halving which higher efficient is used to replace point doubling on the stage of pre-computation.The results of performance analysis show that the proposed scheme could improve the operation efficient of scalar multiplication greatly for elliptic curve cryptography by comparing with existed scalar multiplication algorithm based on integer splitting.Hence the proposed scheme could has better practical value in different systems which applying the elliptic curve cryptography.
作者 张亮 ZHANG Liang(Zhengzhou University of industrial technology, Henan Zhengzhou 451150, China)
出处 《中国电子科学研究院学报》 北大核心 2016年第5期490-494,共5页 Journal of China Academy of Electronics and Information Technology
基金 河南省基础与前沿技术研究计划项目(142300410283) 河南省软科学研究计划项目(142400410179) 河南省教育厅科学技术研究重点项目(12B520063 14B520065) 河南省高等学校青年骨干教师资助计划项目(2013GGJS-230)
关键词 椭圆曲线密码 标量乘法 折半运算 整数拆分形式 ellipse curve cryptography scalar multiplication point halving integer splitting form
  • 相关文献

参考文献5

二级参考文献63

  • 1沈海斌,陈华锋,严晓浪.椭圆曲线密码加速器的设计实现[J].浙江大学学报(工学版),2006,40(9):1490-1493. 被引量:5
  • 2KOBLITZ N. Elliptic Curve Cryptosystems[ J]. Mathematics of computation, 1987,48 ( 177 ) : 203-209. 被引量:1
  • 3SCHNEIER B.应用密码学-协议、算法与C源程序[M].吴世忠,等,译.北京:机械工业出版社,2006. 被引量:1
  • 4KARATSUBA A, OFMAN Y. Multiplication of Multidigit Numbers on Automata [J]. Soviet Physics Doklady, 1963 (7) :595-596. 被引量:1
  • 5ERDEM S S. Improving the Karatsuba-Ofman Multiplication Algorithm for Special Applications [ D ]. Department of Electrical and Computer Engineering, Oregon State University ,2001. 被引量:1
  • 6SMIC 0.18 μm Logic18 Process 1.8-Volt SAGE-XTM Stand- ard Cell Library Databook[ S]. Artisan Components,2003. 被引量:1
  • 7SMIC 130 nm Logic013G Process 1.2-Volt MetroTM v1.0 Standard Cell Library Databook [ S ]. Artisan Components, 2005. 被引量:1
  • 8M Brown, D Hankerson, J Lopez,et al. Software Implementation of the NIST Elliptic Curves over Prime Fields[A].Topics in Cryptology-CT-RST [C].2001.250-265. 被引量:1
  • 9Ian Blake, Gadiel Seroussi, Nigel Smart. Elliptic Curves in Cryptography[M].Cambridge, United Kingdom: Cambridge University Press, 1999. 被引量:1
  • 10N P Smart. Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic[J].Jouranal of Cryptology, 1999, 12(2): 141-151. 被引量:1

共引文献12

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部