期刊文献+

改进的抗能量分析的椭圆曲线标量乘算法 被引量:2

Improved against power analysis of elliptic curve scalar multiplication algorithm
下载PDF
导出
摘要 能量分析是密码攻击中常用且有效的手段,为提高智能卡的抗攻击性能,针对常见的五种能量分析方法,进行全面扼要的分析,提出兼顾效率和安全性的改进标量乘算法。引入随机数以及采用多基数系统表示标量,将单标量乘法改写为双标量乘,结合滑动窗口算法提高效率。当固定窗口长度时,选取标量的三个不同二进制位长,与已有的具有全面抗攻击性标量乘算法相比,效率在二元域及素数域上均得到大幅提高。 Power analysis is a common and effective means of password attack.In order to increase the anti-aggression ability to the smart card,this paper analyzes the common five kinds of power analysis and puts forward the improved scalar multi-plication algorithm which considers both efficiency and safety.Random number and multi-base number system are introduced. A single scalar multiplication is rewritten to the double scalar multiplication,and the sliding window algorithm is combined to improve efficiency.When the window length is fixed and three different scalars are selected,compared with the existing comprehensive anti-aggression scalar multiplication algorithm,the efficiency in binary and prime fields are vastly improved.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第33期68-70,87,共4页 Computer Engineering and Applications
关键词 椭圆曲线 标量乘算法 能量分析 多基数系统 滑动窗口算法 elliptic curve scalar multiplication algorithm power analysis multi-base number system sliding window algorithm
  • 相关文献

参考文献4

二级参考文献26

  • 1Tzer-ShyongChen,Kuo-HsuanHuang,Yu-FangChung.Digital Multi-Signature Scheme Based on the Elliptic Curve Cryptosystem[J].Journal of Computer Science & Technology,2004,19(4):570-572. 被引量:11
  • 2Koblitz N.Elliptic curve cryptosystems[J].Mathematics of Computation, 1987,48 : 203-209. 被引量:1
  • 3Miller V.Uses of elliptic curves in cryptography[C]//LNCS 218: Advances in Cryptology-Crypto'85,1986:417-426. 被引量:1
  • 4Zhu Yue-fei,Zhang Ya-juan.Introduce of ECC system[M].Beijing: Science Publishing Company,2006. 被引量:1
  • 5Cohen H,Miyaji A,Ono T.Efficient elliptic curve exponentiation using mixed coordinates[C]//LNCS 1514..Advances in Cryptology- Crypto'98,1998:51-65. 被引量:1
  • 6Hankerson D, Hernandez J L.Soflware implementation of elliptic cUrve cryptography over binary fields[D/OL].USA:Auburn University. 2006-02.http ://www.dms.auburn.edu/facuhy/hankerson. 被引量:1
  • 7Hankerson D,Menezes A,Vanstone S.Guide to elliptic curve cryptography[M].Berlin : Springer Verlag, 2004. 被引量:1
  • 8Lopez J,Dahab R.Improved algorithms for elliptic curve arithmetic in GF(2n)[C]//LNCS 1556:Selected Areas in Cryptography-SAC'98, 1999:201-212. 被引量:1
  • 9Blake I, Seroussi G, Smart N. Elliptic curves in cryptography [M]. UK: Cambridge University Press, 1999. 被引量:1
  • 10Hankerson D, Menezes A, Vanstone S. Guide to elliptic curve cryptography[M]. New York: Springer-Verlag,2004. 被引量:1

共引文献6

同被引文献19

  • 1罗鹏,冯登国,周永彬.功耗分析攻击中的功耗与数据相关性模型[J].通信学报,2012,33(S1):276-281. 被引量:7
  • 2石润华,钟诚.一种快速的椭圆曲线标量乘方法[J].计算机工程与应用,2006,42(2):156-158. 被引量:9
  • 3PUROHIT G N, RAWAT S A, KUMAR M. Elliptic curve point multiplication using MBNR and point halving[J]. International Journal of Advanced Networking and Applications,2012,3(5):1329-1337. 被引量:1
  • 4PUROHIT G N, RAWAT A S. Fast scalar multiplication in ECC using the multi base number system[J]. International Journal of Computer Science Issues, 2011,8(1):131-137. 被引量:1
  • 5THOMAS C, ARNAUD T. On-the-fly multi-base recoding for ECC scalar multiplication without pre-computations[C] // Proceedings of the 21st IEEE Symposium on Computer Arithmetic. Piscataway: IEEE Press,2013:219-228. 被引量:1
  • 6KNUDSEN E W. Elliptic scalar multiplication using point halving[C] // Proceedings of ASIA CRYPT 1999, LNCS 1716. Berlin: Springer-Verlag,1999:135-149. 被引量:1
  • 7HANKERSON D, MENEZES A J, VANSTONE S. Guide to elliptic curve cryptography[M]. Berlin: Springer-Verlag,2004. 被引量:1
  • 8MISHRA P K, DIMITROV V. Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation[C] // ISC 2007: Proceedings of the 10th International Conference on Information Security, LNCS 4779. Berlin: Springer-verlag,2007:390-406. 被引量:1
  • 9殷新春,赵荣,侯红祥,谢立.基于折半运算的快速双基数标量乘算法[J].计算机应用,2009,29(5):1285-1288. 被引量:8
  • 10洪银芳,桂丰,丁勇.基于半点和多基表示的标量乘法扩展算法[J].计算机工程,2011,37(4):163-164. 被引量:7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部