期刊文献+

基于多基数系统的优化多标量乘快速算法 被引量:3

Optimized fast multi-scalar multiplication algorithm based on MBNS
下载PDF
导出
摘要 多基数链作为双基数链的一个推广,具有标量表示长度更短、非零比特数目更少的特点,较适用于椭圆曲线标量乘的快速计算。结合现有的5倍点公式,同时以2、3和5作为基底,给出了利用多基系统计算椭圆曲线多标量乘的高效算法。与传统Shamir算法与交错NAF算法相比,所提算法计算量更少。 As a generalization of double base chains,multi-base number system were very suitable for efficient computa-tion of scalar multiplications of elliptic curves because of shorter representation length and less Hamming weight.Com-bined with the given formulas for computing the 5-fold of an elliptic curve point P,the efficient scalar multiplication al-gorithms of elliptic curve was proposed using 2,3 and 5 as bases of the multi-base number system.The algorithms cost less compared with Shamir’s trick and interleaving with NAF’s method.
出处 《通信学报》 EI CSCD 北大核心 2010年第S1期122-126,共5页 Journal on Communications
基金 国家高技术研究发展计划("863"计划)基金资助项目(2007AA0124487) 国家自然科学基金资助项目(60473012)~~
关键词 椭圆曲线 公钥密码体制 多标量乘 多基数系统 Elliptic curve public key cryptosystem multi-scalar multiplication multi-based number system
  • 相关文献

参考文献10

二级参考文献48

  • 1KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177): 203-209. 被引量:1
  • 2MILLER V S. Uses of elliptic curves in cryptography[C]// CRYPTO'85: Proceedings of Advances in Cryptology. Springer Berlin: Heidelberg Press, 1986, 218: 417-428. 被引量:1
  • 3DIMITROV V S, JULLIEN G A. Loading the bases: a new number representation with applications[J]. IEEE Circuits and Systems Magazine, 2003, 3(2): 6-23. 被引量:1
  • 4DIMITROV V S, IMBERT L, MISHRA P K. Fast elliptic curve point multiplication using double-base chains [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2005/069. 被引量:1
  • 5AVANZI R, DIMITROV V S, DOCILE C et al. Extending scalar multiplication using double bases[C]//ASIA CRYPT'06: Proceedings of Advances in Cryptolo gy-ASIACRYPT 2006. Springer Berlin: Heidelberg Press, 2006, 4284: 130-144. 被引量:1
  • 6MISHRA P K, DIMITROV V S. Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2007/040. 被引量:1
  • 7EISENTRAGER K, LAUTER K, MONTGOMERY P L. Fast elliptic curve arithmetic and improved Weil pairing evaluation[C]//CT-RSA 2003: Proceedings of Topics in Cryptology. Springer Berlin: Heidelberg Press, 2003, 2612: 343-354. 被引量:1
  • 8CIET M, JOYE M, LAUTER K et al. Trading inversions for multiplications in elliptic curve cryptography[J]. Designs, codes and cryptography, 2006, 39: 189-206. 被引量:1
  • 9DIMITROV V S, IMBERT L, MISHRA P K. Efficient and secure curve point multiplication using double-base chains[C]//Asiacrypt 2005: Proceedings of Advances in Cryptology-ASIACRYPT 2005. Springer Berlin: Heidelberg Press, 2005, LNCS 3788: 59-78. 被引量:1
  • 10KOCHER C, JAFFE J, JUN B. Differential power analysis[C]//Crypto'99: Proceedings of Advances in Cryptology. Springer Berlin: Heidelberg Press, 1999, 1666: 388-397. 被引量:1

共引文献34

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部