期刊文献+

云存储环境下分组校验纠删码冗余算法研究 被引量:1

Redundancy Algorithm of Group Parity Erasure Code Under Cloud Storage Environment
下载PDF
导出
摘要 在海量云存储系统中,提高存储利用率,降低冗余方案的计算复杂度是热点研究问题.分组校验纠删码冗余算法能够减少在数据重构时所需的纠删码片段,从而减少对存储网络带宽以及系统I/O的需求,降低存储系统的负载.介绍了分组校验纠删码的编码规则,参数设置,通过实验分析算法具有良好的容错能力与空间利用率,能够满足云存储系统需要的编解码性能. In the massive cloud storage and reduce the computation complexity sy of stem, the hot research problem is to improve storage utilization redundancy scheme. Redundancy algorithm of group parity era- sure code can reduce the erasure code fragments required for data reconstruction, thereby decreasing the demand for storage network bandwidth and system I/O, and reducing the load of the storage system. Cod- ing rules and parameter settings of group parity erasure code are described in this paper. Good fault toler- ance and space utilization are verified through experimental analysis algorithm, meeting the codec perform- ance required for cloud storage system.
作者 曾赛峰 屈喜龙 ZENG Sai-feng QU Xi-long(School of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan 411104, China)
出处 《湖南工程学院学报(自然科学版)》 2016年第4期42-45,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省自然科学基金资助项目(2016JJ2040) 湖南工程学院博士启动基金项目(15044)
关键词 云存储 纠删码 冗余算法 分组校验 cloud storage erasure code redundancy algorithm group parity
  • 相关文献

参考文献3

二级参考文献48

  • 1McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf. 被引量:1
  • 2Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268]. 被引量:1
  • 3Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414. 被引量:1
  • 4Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69]. 被引量:1
  • 5Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197]. 被引量:1
  • 6Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665]. 被引量:1
  • 7Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739]. 被引量:1
  • 8Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017]. 被引量:1
  • 9Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332. 被引量:1
  • 10Lewis AW, Ghosh S, Tzeng NF. Run-Time energy consumption estimation based on workload in server systems. HotPower, 2008, 8:17-21. https://www.usenix.rg/egay/events/htpwer8/teh/fuMapers/ewis/ewis-htm/. 被引量:1

共引文献134

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部