期刊文献+

A一类三种群时滞捕食系统模型

A Class of Three-species Predator-prey System with Time Delay
下载PDF
导出
摘要 研究了一类三种群时滞捕食系统模型的稳定性.以食饵种群的消极负反馈时滞为分支参数,利用特征值方法,得到系统模型局部渐近稳定的充分条件并确定了模型产生Hopf分支的时滞临界点.最后,利用数值模拟验证了所得结果正确性. This paper is concerned with stability of a three-species predator-prey system with time delay.Using the characteristic value method,the sufficient conditions for the local asymptotic stability of the system model are obtained,and the time delay critical point of the Hopf bifurcation is determined.Finally,numerical simulations are used to verify the correctness of the results.
出处 《菏泽学院学报》 2016年第5期32-35,共4页 Journal of Heze University
基金 2016年度安徽省自然科学基金青年项目(1608085QF151)
关键词 时滞捕食系统 种群 稳定性 HOPF分支 predator-prey system with time delay species stability Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献18

  • 1Wei DING, Mao-an HAN. Dynamic of a non-autonomouspredator-prey system with infinite delay and diffusion [J].Computers and Mathematics with Applications,2008,56(5): 1335-1350. 被引量:1
  • 2Zheng-qiu ZHANG, Zhen-ting HOU* W LI. Multiplicity ofpositive periodic solutions to a generalized delayed predator-prey system with stocking [J]. Nonlinear Analysis, 2008, 68(9): 2608-2622. 被引量:1
  • 3Y G SUN,S H SAKER. Positive periodic solutions of discretthree-level food-chain model of Holling type II [J], AppliedMath ematics and Compilation.,2006,180(1) : 353 — 36. 被引量:1
  • 4Meng FAN, Q WANG. Periodic solutions of a class of nonau-tonomous discrete time semi-ratio-dependent predator-preysystems [J], Discrete and Continuous Dynamical Systems —series B,2004, 4(3): 563 — 574. 被引量:1
  • 5M BOHNER, Meng FAN, Ji-ming ZHANG. Existence of pe-riodic solutions in predator-prey and competition dynamic sys-tems [J]. Nonlinear Analysis; Real World Applications,2006,7(5): 1193-1204. 被引量:1
  • 6刘振杰,时间测度上具有时滞基于比率的捕食者-食饵扩散系统的周期解[J].数学的实践与认识2008,38(24):235-239. 被引量:1
  • 7Can-Yun HUANG, Min ZHAO,Li-Chun ZHAO. Perma-nence of periodic predator-prey system with two predatorsand stage structure for prey [J],Nonlinear Analysis: RealWorld Applications, 2010, 11(1) : 503 — 514. 被引量:1
  • 8R E GAINES,J L MAWHIN. Coincidence degree and nonlin-ear differential equations [ M ]. Berlin: Springer-Verlag,1977. 被引量:1
  • 9Meng FAN. Ke WANG. Periodic solutions of a discrete timenonautonomous ratio-dependent predator-prey system [J].Mathematical and Computer Modelling, 2002,35(9/10):951-961. 被引量:1
  • 10Wang Chang-you, Wang Shu, Yang Fu-ping, et al. Global asymptotic stability of positive equilibri- um of three-species Lotka-Volterra mutualism models with diffusion and delay effects[J]. Applied Mathematical Modelling, 2010,34(12) .. 4278 - 7288. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部