期刊文献+

基于光纤低相干干涉技术的透镜中心厚度测量方法研究 被引量:8

Study on the Method of Measuring the Center Thickness of the Lenses based on Low Coherence Interferometry of Optical Fiber
原文传递
导出
摘要 基于光纤低相干干涉技术的测厚原理,提出了透镜中心厚度检测系统的结构设计;分析了影响检测仪器检测精度的主要因素,并分别从光路、电路设计及信号处理等方面,提出了提高检测系统检测精度的方法;同时将K-means聚类算法应用于多组干涉信号峰值识别和提取,有效提高了系统测量的重复精度。所设计的系统具有结构简单、测量速度快等特点,测量精度优于1μm。 The principle of thickness measurement is introduced based on low coherence interferometry of optical fiber and the structure design of the test instruments for lens thickness is put forward;At the same time,the main factors affecting the measuring accuracy of the test instruments is analyzed.In addition,the method to improve the measuring accuracy of the system is proposed in the optical path,circuit design and signal processing.Furthermore,K-means clustering algorithm is applied to multi-group interference signal peak identification and extraction in order to increase the repeated accuracy of the measurement system.The designed system is characterized by high accuracy and rapid speed and the measuring accuracy of instrument is better than 1um
机构地区 东华大学理学院
出处 《应用激光》 CSCD 北大核心 2016年第5期605-610,共6页 Applied Laser
基金 国家自然科学基金资助项目(项目编号:51575099) 上海市自然科学基金资助项目(项目编号:15ZR1401700)
关键词 光纤低相干干涉 透镜中心厚度 K-MEANS聚类 信号峰值 low coherence interference of optical fiber lens center thickness K-means clustering signal peak
  • 相关文献

参考文献5

二级参考文献75

  • 1蒋家东,袁道成,蒲洁.基于图像测量技术的装配间隙在线测量研究[J].传感器技术,2005,24(12):26-28. 被引量:9
  • 2郁道银 谈恒英.工程光学[M].北京:机械工业出版社,1998.. 被引量:19
  • 3Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666. 被引量:1
  • 4Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2. 被引量:1
  • 5Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310. 被引量:1
  • 6Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962. 被引量:1
  • 7Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248. 被引量:1
  • 8Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285. 被引量:1
  • 9Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965. 被引量:1
  • 10WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9. 被引量:1

共引文献323

同被引文献57

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部