期刊文献+

一类具有强阻尼的高阶Kirchhoff型方程的初边值问题

The initial boundary value of the higher order Kirchhoff type equation with strong damping
下载PDF
导出
摘要 针对一类具有强阻尼项的高阶Kirchhoff型方程的初边值问题,首先引入了几个重要的泛函和集合,并给出了整体弱解的定义。然后通过两个引理分析了整体弱解的性质,并且使用Galerkin方法构造了高阶Kirchhoff型方程的近似解。最后利用一些先验估计式,分析了近似解在不同范数下的有界性和收敛性,证明了这些近似解的极限就是高阶Kirchhoff型方程的整体弱解。 In this paper, the initial boundary value of the high order Kirchhoff type equation was studied. Firstly, we introduced some important functional and sets, defined the global weak solution, and analyzed the property of the global weak solutions through two lemmas. Then the approximate solutions of the higher order Kirchhoff type equation were constructed. Finally, the bounded property of the approximate solutions was analyzed by some priori estimates in different norm, and the convergence of the approximate solutions was discussed. It is proved that the limit of the approximate solutions is a global weak solution of the higher order Kirchhoff type equation.
作者 晋守博
出处 《淮南师范学院学报》 2016年第5期96-99,共4页 Journal of Huainan Normal University
基金 安徽省自然科学研究面上项目"分数阶微分发展系统的可控性研究"(1508085MA10) 宿州学院优秀青年人才支持计划重点项目"阻尼项和多个非线性源项共同作用下的波动方程整体解的存在性与不存在性问题"(2016XQNRL003)
关键词 高阶Kirchhoff型方程 强阻尼 整体弱解 GALERKIN方法 higher order Kirchhoff type equation strong damping global weak solution Galerkin method
  • 相关文献

参考文献3

二级参考文献23

  • 1刘亚成,刘萍.关于位势井及其对强阻尼非线性波动方程的应用[J].应用数学学报,2004,27(4):710-722. 被引量:18
  • 2刘亚成,王锋,刘大成.任意维数的强阻尼非线性波动方程(Ⅰ)——初边值问题[J].应用数学,1995,8(3):262-266. 被引量:14
  • 3Nakao M, Zhijian Y. Global attractors for some quasi-linear wave equations with a strong dissipation. Advan Math Sci Appl, 2007, 17:89-105. 被引量:1
  • 4Xiaoming F, Shengfan Z. Kernel sections for non-autonomous strongly damped wave equations of non- degnerate Kirchhoff-type. Applied Mathematics and Computation, 2004, 158:253- 266. 被引量:1
  • 5Hosoya M, Yamada Y. On some nonlinear wave equations: global existence and energy decay of solutions. J Fac Sci Univ Tokyo Sect IA Math, 1991, 38:239-250. 被引量:1
  • 6Ghisi M. Global solutions for dissipative Kirchhoff strings with non-Lipschitz nonlinear term. J Differential Equations, 2006, 230:128-139. 被引量:1
  • 7Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992. 被引量:1
  • 8Temam R. Infinite Dimensional Dynamical System in Mathematics and Physics. New York: Springer, 1997. 被引量:1
  • 9Chen F X, Guo B L, Wang P. Long time behavior of strongly damped nonlinear wave equations. J Differental Equatons 1998, 147:231- 241. 被引量:1
  • 10Karachalois N I, Stavrakakis N M. Existence of a global attractor for semilinear dissipative wave equation on R^N. J Differential Equations, 1999, 157:183-205. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部