期刊文献+

一种基于暗通道的航拍图像去雾算法 被引量:2

An Aerial Image Dehazing Algorithm Based on Dark Channel
下载PDF
导出
摘要 针对无人机航拍图像在雾霾天气下降质特点,提出一种基于暗通道先验原理的航拍图像去雾改进算法。根据大气物理模型和暗通道原理,对有雾图像进行自适应分块求取暗通道图;通过降采样得到初始透射率图,再应用导引滤波对投射率进行优化,同时利用最小值滤波和均值滤波求解大气光强;应用雾天模型恢复降质图像。通过实验对比验证,该算法简单且能够高效去雾,在客观评价指标上总体性能也优于其他算法。 UAV aerial images are seriously degraded in haze weather. To solve this problem,the paper proposes an aerial image dehazing algorithm based on dark channel prior principle.According to the physical model of atmosphere and dark channel principle,the hazed image is adaptively segmented to obtain the dark channel graph; the initial transmissivity diagram is obtained through down sampling; and the projection ratio is optimized by using guided filter. At the same time,the gas intensity is solved by using minimum filter and mean filter; finally,the dehazed image is recovered from the degraded image through the haze model.The experimental comparison and verification show that the image dehazing algorithm is simple and can be highly efficient,and the overall performance of the objective evaluation index is better than other algorithms.
出处 《无线电工程》 2016年第11期38-41,78,共5页 Radio Engineering
关键词 无人机侦察 图像去雾 大气物理模型 暗通道 UAV reconnaissance image dehazing physical model of atmosphere dark channel
  • 相关文献

参考文献9

二级参考文献51

  • 1刘楠,程咏梅,赵永强.基于加权暗通道的图像去雾方法[J].光子学报,2012,41(3):320-325. 被引量:23
  • 2Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254. 被引量:1
  • 3Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193. 被引量:1
  • 4Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. 被引量:1
  • 5Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332. 被引量:1
  • 6Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525. 被引量:1
  • 7Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45. 被引量:1
  • 8Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991. 被引量:1
  • 9Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179. 被引量:1
  • 10Tan K, Oakley P J. Physics-based approach to color image enhancement in po()r visibility conditions. Optical Society o[America, 2001. 18(10): 2460-2467. 被引量:1

共引文献121

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部