期刊文献+

基于量子粒子群模糊C均值聚类算法应用研究 被引量:2

Study on the Application of Fuzzy C-Means Clustering Algorithm Based on Quantum Particle Swarm C
下载PDF
导出
摘要 模糊C均值聚类对初始参数有着较强的依赖性,文中针对其对初始聚类中心敏感的问题,提出利用量子粒子群来优化FCM的初始聚类中心。粒子群优化算法具有较强的全局搜索能力,但局部搜索能力不足,因此借助于量子理论,将粒子群量子化,借助量子旋转门改变粒子的移动,同时利用量子非门增加种群的多样性,加强粒子群优化算法的局部寻优能力。并最终利用量子粒子群优化算法搜寻FCM算法的初始聚类中心,通过实验仿真表明,改进的算法在加快搜索速度的同时,能获得较为稳定的聚类中心且分割效果明显优于标准的FCM算法。 Fuzzy c-means (FCM) clustering has an excessive dependence on initial parameters. The quantum particle swarm is adopted to optimize initial clustering center of FCM to address its sensitivity to the initial clustering center. The particle swarm optimization algorithm has stronger global searching ability, but insufficient local search ability, The quantum rotating gate changes the movement of the particles and increases the diversity of population, thus better local optimization ability of particle swarm optimization algorithm. The quantum particle swarm optimization algorithm is used to search the initial clustering center of FCM algorithm. The experimental simulation shows that the improved algorithm can speed up the search while obtaining more stable clustering center and better segmentation effect than the standard FCM algorithm segmentation effect.
机构地区 [ 太原电务段
出处 《电子科技》 2016年第11期137-141,共5页 Electronic Science and Technology
关键词 模糊C均值聚类 抗噪性 道岔缺口 图像分割 FCM noise immunity rail gap image segmentation
  • 相关文献

参考文献8

  • 1张翡,范虹.基于模糊C均值聚类的医学图像分割研究[J].计算机工程与应用,2014,50(4):144-151. 被引量:37
  • 2Joseph C Dunn.A fuzzy relative of the IS0DATA process and its use in detecting compact well separated clusters[J].Journal of Cybernetics,1973,3(1):32-47. 被引量:1
  • 3Kennedy J,Eberhart R C.Partiele swarm optimization[C].Perth,Australia :Proe of the IEEE International Conference on Neural Networks (ICNN),1995. 被引量:1
  • 4纪震著..粒子群算法及应用[M].北京:科学出版社,2009:249.
  • 5孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011. 被引量:19
  • 6李士勇,李盼池著..量子计算与量子优化算法[M].哈尔滨:哈尔滨工业大学出版社,2009:230.
  • 7赵生妹,郑宝玉编著..量子信息处理技术[M].北京:北京邮电大学出版社,2008:250.
  • 8陈汉武..量子信息与量子计算简明教程[M],2006.

二级参考文献45

  • 1杨悦,郭树旭,任瑞治,于永力.基于核函数及空间邻域信息的FCM图像分割新算法[J].吉林大学学报(工学版),2011,41(S2):283-287. 被引量:10
  • 2伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 3王备,王继成.图像分割中模糊聚类数目的确定[J].计算机技术与发展,2007,17(10):162-164. 被引量:7
  • 4Daisne J F, Sibomana M, Bol A, et al.Evaluation of a mul- timodality image(CT,MRI and PET) coregistration pro- cedure on phantom and head and neck cancer patients: accuracy,reproducibility and consistency[J].European So- ciety for Therapeutic Radiology and Oncology, 2003,69 (3) :237-245. 被引量:1
  • 5Zijdenbos A P, Dawant B M.Brain segmentation and white matter lesion detection in MR images[J].Critical Reviews in Biomedical Engineering, 1994,22(5/6) : 401-465. 被引量:1
  • 6Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973,3(3) :32-57. 被引量:1
  • 7Bezedek J C.Pattern recognition with fuzzy objective func- tion algorithm[M].New York:Plenum Press,1981. 被引量:1
  • 8Nikhil P R,Bezdek J C.On cluster validity for the fuzzy C-means model[J].IEEE Transactions on Fuzzy Systems, 1995,3(3) :370-379. 被引量:1
  • 9Cannon R L,Dave J V,Bezdek J C.Efficient implemen-tation of the fuzzy C-means clustering algorithms[J]. IEEE Trans on Pattern Ara, 1986,PAMI-8(2):248-255. 被引量:1
  • 10Cheng T W, Golggof D B, Hall L O.Fast fuzzy clustering[J]. Fuzzy Sets Syst, 1998,93 ( 1 ) : 49-56. 被引量:1

共引文献54

同被引文献24

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部