期刊文献+

基于隐马尔可夫模型的语音激活检测算法 被引量:4

Voice activity detection algorithm based on hidden Markov model
下载PDF
导出
摘要 针对现有基于隐马尔可夫模型(HMM)的语音激活检测(VAD)算法对噪声的跟踪性能不佳的问题,提出采用Baum-Welch算法对具有不同特性的噪声进行训练,并生成相应噪声模型,建立噪声库的方法。在语音激活检测时,根据待测语音背景噪声的不同,动态地匹配噪声库中的噪声模型;同时,为了适应语音信号的实时处理,降低了语音参数提取的复杂度,并对判决阈值提出改进,以保证语音信号帧间的相关性。在不同噪声环境下对改进算法进行性能测试并与自适应多速率编码(AMR)标准、国际电信联盟电信标准分局(ITU-T)的G.729B标准比较,测试结果表明,改进算法在实时语音信号处理中能够有效提高检测的准确率及噪声跟踪能力。 Concerning the problem that the existing Voice Activity Detection (VAD) algorithms based on Hidden Markov Model (HMM) were poor to track noise, a method using Baum-Welch algorithm was proposed to train the noise with different characteristics, and the corresponding noise model was generated to establish a library. When voice activity was detected, depending on the measured background noise of the speech, the voice was dynamically matched to a noise model in the library. Meanwhile, in order to meet real-time requirements of speech signal processing, reduce the complexity of the speech parameter extraction, the threshold was improved to ensure the inter-frame correlation of the speech signal. Under different noise environments, the improved algorithm performance was tested and compared with Adaptive Multi-Rate ( AMR), G. 729B of the International Telecommunications Union (ITU-T). The test results show that the improved algorithm can effectively improve the accuracy of detection and noise tracking ability in real-time voice signal processing.
出处 《计算机应用》 CSCD 北大核心 2016年第11期3212-3216,共5页 journal of Computer Applications
基金 重庆市科委自然科学基金资助项目(cstc2015jcyjA40027)~~
关键词 隐马尔可夫模型 语音激活检测 Baum-Welch算法 噪声库 阈值 Hidden Markov Model (HMM) voice activity detection Baum-Welch algorithm noise library threshold
  • 相关文献

参考文献13

  • 1KOLA J, ESPY-WILSON C, PRUTHI T. Voice activity detection[R/OL].[2016-01-20].http://www.ece.umd.edu/merit/archives/merit2011/merit_fair11_reports/report_Kola.pdf. 被引量:1
  • 2OUKHERFELLAH M, BAHOURA M. FPGA implementation of voice activity detector for efficient speech enhancement[C]//Proceedings of the 2014 IEEE 12th International New Circuits and Systems Conference. Piscataway, NJ:IEEE, 2014:301-304. 被引量:1
  • 3BERITELLI F, CASALE S, RUGGERI G, et al. Performance evaluation and comparison of G. 729/AMR/fuzzy voice activity detectors[J]. IEEE Signal Processing Letters, 2002, 9(3):85-88. 被引量:1
  • 4张金榜,尹冬梅.基于统计模型的语音激活检测算法改进[J].微型机与应用,2015,34(12):14-16. 被引量:1
  • 5SUH Y, KIM H. Multiple acoustic model-based discriminative likelihood ratio weighting for voice activity detection[J]. IEEE Signal Processing Letters, 2012, 19(8):507-510. 被引量:1
  • 6ZHOU B, LIU J,PEI Z. Noise-robust voice activity detector based on four states-based HMM[J].Applied Mechanics and Materials, 2013, 411/412/413/414:743-748. 被引量:1
  • 7RONAO C A, CHO S B. Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models[C]//Proceedings of the 201410th International Conference on Natural Computation. Piscataway, NJ:IEEE, 2014:681-686. 被引量:1
  • 8肖佳林,赵聿晴,王英.基于HMM与SVM的语音活动检测[J].计算机工程,2014,40(1):203-208. 被引量:10
  • 9李嘉安娜..噪声环境下的语音端点检测方法研究[D].华南理工大学,2015:
  • 10LI J A N. Research of voice activity detection method in noise environment[D]. Guangzhou:South China University of Technology, 2015:7-40). 被引量:1

二级参考文献6

共引文献9

同被引文献36

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部