期刊文献+

自适应混沌粒子群算法对极限学习机参数的优化 被引量:22

Optimization of extreme learning machine parameters by adaptive chaotic particle swarm optimization algorithm
下载PDF
导出
摘要 针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 Since it was not ideal for Extreme Learning Machine (ELM) to deal with non-linear data, and the parameter randomization of ELM was not conducive for generalizing the model, an improved version of ELM algorithm was proposed. The parameters of ELM were optimized by Adaptive Chaotic Particle Swarm Optimization (ACPSO) algorithm to increase the stability of the algorithm and improve the accuracy of ELM for gene expression data classification. The simulation experiments were carried out on the UCI gene data. The results show that Adaptive Chaotic Particle Swarm Optimization-Extreme Learning Machine (ACPSO-ELM) has good stability and reliability, and effectively improves the accuracy of gene classification over existing algorithms, such as Detecting Particle Swarm Optimization-Extreme Learning Machine (DPSO-ELM) and Particle Swarm Optimization-Extreme Learning Machine (PSO-ELM).
出处 《计算机应用》 CSCD 北大核心 2016年第11期3123-3126,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272315) 浙江省自然科学基金资助项目(LY14F020041) 国家安全总局项目(zhejiang-00062014AQ)~~
关键词 自适应 极限学习机 混沌粒子群 基因分类 adaptive Extreme Learning Machine (ELM) chaotic particle swarm gene classification
  • 相关文献

参考文献23

  • 1HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006,70(1):489-501. 被引量:1
  • 2SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference of Evolutionary Computation. Piscataway, NJ:IEEE, 1998:69-73. 被引量:1
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE, 1995:1942-1948. 被引量:1
  • 4LEI X J,SUN J J,MAQ Z. Multiple sequence alignment based on chaotic PSO[J].Computational Intelligence and Intelligent Systems, 2009, 117(2/3):351-360. 被引量:1
  • 5HAN F, YAO H F,LING Q H.An improved extreme learning machine based on particle swarm optimization[C]//Proceedings of the 7th International Conference on Intelligent Computing:Bio-Inspired Computing an Applications. Berlin:Springer-Verlag, 2012:699-704. 被引量:1
  • 6杨景明,马明明,车海军,徐德树,郭秋辰.多目标自适应混沌粒子群优化算法[J].控制与决策,2015,30(12):2168-2174. 被引量:38
  • 7HE Z B, WEN X H, HU LIU, et al. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology, 2014, 509:379-386. 被引量:1
  • 8陆慧娟,安春霖,马小平,郑恩辉,杨小兵.基于输出不一致测度的极限学习机集成的基因表达数据分类[J].计算机学报,2013,36(2):341-348. 被引量:41
  • 9HUANG G B, CHEN L, SIEW C K. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(18):3460-3468. 被引量:1
  • 10HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2012, 42(2):513-529. 被引量:1

二级参考文献39

共引文献95

同被引文献197

引证文献22

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部