期刊文献+

基于深度图像与骨骼数据的行为识别 被引量:7

Action recognition based on depth images and skeleton data
下载PDF
导出
摘要 为了充分利用深度图像与骨骼数据进行人体行为识别,提出了一种基于深度图形与骨骼数据的多特征行为识别方法。该算法的多特征包括深度运动图(DMM)特征与四方形骨骼特征(Quad)。深度图像方面,将深度图像投影到一个笛卡尔坐标系的三个平面获得深度运动图特征。骨骼数据方面,提出四方形骨骼特征,它是骨骼坐标的一种标定方式,得到的结果只与骨骼姿态有关。同时提出一种多模型概率投票的分类策略,减小了噪声数据对分类结果的影响。所提方法在MSR-Action3D和DHA数据库进行实验,实验结果表明,所提算法有着较高的识别率与良好的鲁棒性。 In order to make full use of depth images and skeleton data for action detection, a multi-feature human action recognition method based on depth images and skeleton data was proposed. Multi-features included Depth Motion Map (DMM) feature and Quadruples skeletal feature (Quad). In aspect of depth images, DMM could be captured by projecting the depth image onto the three plane of a Descartes coordinate system. In aspect of skeleton data, Quad was a kind of calibration method for skeleton features and the results were only related to the skeleton posture. Meanwhile, a strategy of multi-model probabilistic voting model was proposed to reduce the influence from noise data on the classification. The proposed method was evaluated on Microsoft Research Action3D dataset and Depth-included Human Action (DHA) database. The results indicate that the method has high accuracy and good robustness.
出处 《计算机应用》 CSCD 北大核心 2016年第11期2979-2984,2992,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61063021) 江苏省产学研前瞻性联合研究项目(BY2015027-12)~~
关键词 深度图像 骨骼数据 行为识别 深度运动图 四方形骨骼特征 depth image skeleton data action recognition depth motion map Quadruples skeletal feature (Quad)
  • 相关文献

参考文献25

  • 1XIA L, CHEN C C, AGGARWAL J K. View invariant human action recognition using histograms of 3D joints[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2012:20-27. 被引量:1
  • 2YANG X, TIAN Y. Eigen-joints-based action recognition using naive-Bayes-nearest-neighbor[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2012:14-19. 被引量:1
  • 3LI W, ZHANG Z, LIU Z. Action recognition based on a bag of 3D points[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2010:9-14. 被引量:1
  • 4SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2011:1297-1304. 被引量:1
  • 5SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions:a local SVM approach[C]//Proceedings of the 17th IEEE International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2004, 3:32-36. 被引量:1
  • 6SUN J, WU X, YAN S, et al. Hierarchical spatio-temporal context modeling for action recognition[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2009:2004-2011. 被引量:1
  • 7BOBICK A, DAVIS J. The recognition of human movement using temporal templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3):257-267. 被引量:1
  • 8蔡加欣,冯国灿,汤鑫,罗志宏.基于局部轮廓和随机森林的人体行为识别[J].光学学报,2014,34(10):204-213. 被引量:29
  • 9LI W, ZHANG Z, LIU Z. Action recognition based on a bag of 3D points[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2010:9-14. 被引量:1
  • 10YANG X, ZHANG C,TIAN Y. Recognizing actions using depth motion maps-based histograms of oriented gradients[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York:ACM, 2012:1057-1060. 被引量:1

二级参考文献51

  • 1王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(2):91-110. 被引量:1
  • 3Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,CA,USA:IEEE,2005.886-893. 被引量:1
  • 4Ojala T,Pietikainen M,Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A].Jerusalem,Irsael:IEEE,1994.582-585. 被引量:1
  • 5Matas J,Chum O,Urban M. Robust wide-baseline stereo from maximally stable extremal regions[J].{H}IMAGE AND VISION COMPUTING,2004,(10):761-767. 被引量:1
  • 6Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554. 被引量:1
  • 7Hinton G E. Learning multiple layers of representation[J].{H}Trends in Cognitive Sciences,2007,(10):428-434. 被引量:1
  • 8Hinton G E,Zemel R S. Autoencoders,minimum description length,and Helmholtz free energy[A].Burlington,USA:Morgan Kaufmann,1994.3-10. 被引量:1
  • 9Rumelhart D E,Hinton G E,Williams R J. Learning Representations by Back-Propagating Errors[M].Cogmitive Modeling:MIT Press,2002.213. 被引量:1
  • 10Vincent P,Larochelle H,Bengio Y. Extracting and composing robust features with denoising autoencoders[A].New York,NY,USA:ACM,2008.1096-1103. 被引量:1

共引文献173

同被引文献38

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部