摘要
将稀土纳米材料Er2O3用于构建葡萄糖生物传感器。Er2O3和氧化石墨烯形成复合基底.将葡萄糖氧化酶(GOD)固载在玻碳电极表面。首先利用SEM和XRD技术对所制备的Er2O3和氧化石墨烯纳米材料进行表征。利用EIS和CV对整个生物传感器制备过程进行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其与电极之间的电子传递。由于Er2O3和氧化石墨烯之间的协同效应,使得制备的传感器在CV图中呈现一对明显的氧化还原峰.证实GOD和电极之间的直接电子传递性能。当用于对葡萄糖的电催化氧化时,传感器的CV响应随着葡萄糖浓度的增加而变弱。在葡萄糖浓度为1~10mmol·L-1范围内.CV响应值与葡萄糖浓度成线性关系。此外.传感器具有好的稳定性和重现性。
A new rare earth oxide of Er2O3 was employed for the construction of glucose biosensor. Er2O3 was mixed with graphene oxide (GO) to form the supported matrix for immobilization of glucose oxidase (GOD) onto the glassy carbon electrode (GCE). The nanomaterials of Er2O3 and GO were firstly synthesized and characterized by SEM, XRD. The fabrication process for the biosensor was monitored by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The presence of Er2O3 could effectively maintain the bioactivity of GOD and enhance the electron transfer rate. The prepared biosensor showed a pair of distinct and well-defined redox peaks, indicating the fast direct electron transfer (DET) rate between the redox-active site of GOD and GCE, which could be attributed to the synergistic effect of the GO/Er2O3 nanocomposite. When employed to the electrocatalytic detection of glucose, the CV response of the prepared biosensor decreased against the concentrations of glucose. The calibration curve corresponding to the CV response was linear against the concentrations of glucose ranging from 1 to 10 mmol·L-1. Moreover, the biosensor showed good stability and reproducibility.
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2016年第11期2034-2040,共7页
Chinese Journal of Inorganic Chemistry
基金
国家自然科学基金(No.21465013,21475057,21005034)
中国博士后科学基金(No.2014M551550)
江西省自然科学基金(No.20114BAB213014,GJJ13433)
江西理工大学清江青年英才支持计划资助项目