期刊文献+

湿牛粪在固定床反应器内热解制富氢气体参数研究 被引量:1

STUDY ON PYROLYSIS PARAMETER OF WET CATTLE MANURE FOR HYDROGEN RICH GAS IN FIXED BED REACTOR
下载PDF
导出
摘要 为探索湿牛粪热解气化制富氢气体的参数,以湿牛粪为研究对象,在固定床反应器内采用单因素试验法,对不同温度、水分质量分数、升温速率和进料温度条件下,热解气产率、H_2产率、热解气成分、热值和碳转化率的变化进行实验研究和分析。结果表明:随着温度的升高和水分质量分数的增加,H_2容积百分含量、热解气产率和热值增大;当反应温度从700℃升至900℃时,H_2容积百分含量从35.99%增至49.19%,单位干物质产气量从277.37 mL/g增至924.26 mL/g,气体的热值从3681.58 kJ/m^3增至6167.56 kJ/m^3。升温速率和进料温度对H_2容积百分含量和产气率的影响不明显,在不同升温速率和进料温度条件下,H_2容积百分含量波动幅度较小。 In order to explore the operation parameter of pyrolysis for hydrogen-rich gas production with wet cattle manure, the wet cattle manure was used as feedstock to investigate the effect of the reactor temperature, moisture content, heating rate and feed temperature on pyrolysis gas yield, hydrogen yield, gas composition, gas heating value and carbon conversion efficiency through a single factor experimental method in a fixed bed reactor. The results show that the volumetric concentration of hydrogen, pyrolysis gas yield and heating value are increased steadily with increasing pyrolysis temperature and moisture content. When the pyrolysis temperature increases from 700 ℃ to 900 ℃, hydrogen volumetric concentration, pyrolysis gas yield and heating value are increased from 35.99% , 277.37 mL/g and 3681.58 kJ/m^3 to 49.19%, 924.26 mL/g and 6167.56 kJ/m^3, respectively. The effect of heating rate and feed temperature on volumetric concentration of hydrogen and pyrolysis gas yield is not significant. Hydrogen volumetric concentration has a slight fluctuation with different heating rates and feed temperatures.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第10期2675-2681,共7页 Acta Energiae Solaris Sinica
基金 公益性行业(农业)科研专项经费(201303091)
关键词 湿牛粪 热解 富氢气体 固定床反应器 wet cattle manure pyrolysis hydrogen-rich gas fixed bed reactor
  • 相关文献

参考文献18

  • 1Chen Yingquan, Yang Haiping,Wang Xianhua, et al.Biomass-based pyrolytic polygeneration system on cottonstalk pyrolysis : Influence of temperature [J].Bioresource Technology, 2012,107 : 411418. 被引量:1
  • 2Leibbrandt N H,Knoetze J H,Gorgens J F. Comparingbiological and thermochemical processing of sugarcanebagasse: An energy balance perspective [J]. Biomassand Bioenergy, 2011,35(5): 2117-2126. 被引量:1
  • 3Ni M, Leung D Y C, Leung M K H,et al. An overviewof hydrogen production from biomass [J]. FuelProcessing Technology, 2006,87(5) : 461-472. 被引量:1
  • 4Waheed Q M K, Nahil M A,Williams P T. Pyrolysis ofwaste biomass : Investigation of fast pyrolysis and slowpyrolysis process conditions on product yield and gascomposition [J]. Journal of the Energy Institute, 2013,86(4): 233-241. 被引量:1
  • 5陈狲.生活垃圾固定床热解气化特性的实验研究及其过程模拟[D].杭州:浙江大学,2011. 被引量:1
  • 6Chen Chong. Experimental study and process simulationon MSW pyrolysis and gasification in fixed bed [D].Hangzhou: Zhejiang University, 2011. 被引量:1
  • 7Liu Xuan, Li Zifu, Zhang Yaozhong. Energy balanceanalysis on the slow pyrolysis process of cattle manure[J]. Applied Mechanics and Materials, 2013, 392:531-534. 被引量:1
  • 8Wu H, Hanna M A, Jones D D. Thermogravimetriccharacterization of dairy manure as pyrolysis andcombustion feedstocks [J]. Waste Management andResearch, 2012,30(10): 1066-1071. 被引量:1
  • 9Cantrell K B,Hunt P G,Uchimiya M,et al. Impact ofpyrolysis temperature and manure source onphysicochemical characteristics of biochar [J].Bioresource Technology, 2012, 107: 419-428. 被引量:1
  • 10Ro K S, Cantrell K B, Hunt P G. High-temperaturepyrolysis of blended animal manures for producingrenewable energy and value- added biochar [J].Industrial and Engineering Chemistry Research, 2010,49(20): 10125-10131. 被引量:1

二级参考文献41

  • 1[17]Kubiak H, Papamichalis A. Production of hydrogen by allothermal gasification of biomass [ A ]. Hydrogen Energy Progress Ⅺ, Proceedings of the 11th World Hydrogen Energy Conference[C]. 1996. 621-629. 被引量:1
  • 2[18]Hofbauer H, Rauch R, Foscolo P, et al. Hydrogenrich gas from biomass steam gasification[ A]. 1st World Conference on Biomass for Energy and Industry [ C ].2000. 1999-2001. 被引量:1
  • 3[19]Srinivas S T, Dalai A K, Bakhshi N N. Potential of producing hydrogen and high Btu gas from steam gasification of biomass-derived chars[A]. Canadian Society for Chemical engineering Conference[ C]. 1998. 被引量:1
  • 4[20]Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production [ J ].Energy Conversion and Management, 2003, 44:2289-2296. 被引量:1
  • 5[21]Chornet E, Czernik S, Wang D, et al. Biomass to hydrogen via pyrolysis and reforming[ A]. Proceedings of the 1994 U.S. DOE Hydrogen Program Review [ C],1994: 407-432. 被引量:1
  • 6[22]Chornet E, Wang D, Czernik S, et al. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming [A]. Proceedings of the 1996 U.S. DOE Hydrogen Program Review[C]. 1996. 457-480. 被引量:1
  • 7[23]Czernik S, French R, Feik C, et al. Production of hydrogen from biomass- derived liquids[A]. Proceedings of the 2000 U.S. DOE Hydrogen Program Review [C]. 2000, 130-140. 被引量:1
  • 8[24]Czernik S, French R, Feik C, et al. Production of hydrogen from biomass [ A ]. Derived Liquids. Proceedings of the 2001 U.S. DOE Hydrogen Program Review [C]. 2001. 被引量:1
  • 9[25]Simell P A, Leppalahti J K, Bredenberg J B. Pyrolysis of Biomass with the Addition of CaO [ J ]. Fuel,1992, 71: 221-228. 被引量:1
  • 10[26]Caglar A, Demirbas A. Conversion of cotton cocoon shell to hydrogen rich gaseous products by pyrolysis [J]. Energy Conversion and Management, 2002, 43:489-497. 被引量:1

共引文献32

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部