期刊文献+

基于有奖马尔可夫的大数据实时系统的可靠性评价

Research on the Trusted Big Data Real Time Processing System with Reward Markov Chain and Multi-State System Theory
下载PDF
导出
摘要 大数据时代来临后,传统的数据实时性处理系统已不能满足大数据的实时性处理要求,大数据的实时性处理问题被越来越多的研究人员所关注.目前对大数据实时处理系统的可靠性研究主要集中在建立资源调度模型,提出解决方案等领域,对大数据系统实时性的评价的研究较少.针对这种情况,从大数据实时处理的应用层面上提出了一种定量测量其可靠性的评价方法,此评价方法是在分析大数据系统的评价指标后,利用连续时间有奖马尔可夫相关理论,定量地分析了有关大数据实时处理系统的可靠性.在对模型进行仿真实验之后,确定模型的可行性. After the advent of the era of big data,the traditional data real-time processing system has been unable to meet the real-time processing of large data. So the problem of real-time data processing has gotten the attention of researchers. At present,the research on the reliability of large data real-time processing system mainly concentrates on the establishment of resource scheduling model and the relevant solution,but is of less research on real-time evaluation of large data systems. In this situation,this paper puts forward an evaluation method for the quantitative measurement of the reliability in the application level. This evaluation method contains the analysis of large data evaluation index system,using the continuous time Markov reward theory to analyse the reliability of the real-time processing system for large data. After the simulation experiment of the model,the feasibility of the model has been determined.
出处 《平顶山学院学报》 2016年第5期59-69,共11页 Journal of Pingdingshan University
关键词 大数据系统 可靠性 实时性 有奖马尔可夫 流式计算 big data system reliability real-time prize Markov flow calculation
  • 相关文献

参考文献10

二级参考文献94

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部