期刊文献+

基于大数据的热点区域人员流量实时监测系统 被引量:3

Big data-based hot-spot real-time traffic monitoring system
下载PDF
导出
摘要 采用大数据技术实现一个热点区域人员流量的实时监测系统.该系统分析热点区域内每个出入口实时人员流量,挖掘各热点区域驻留人员数量规律,从而科学地安排资源及运营管理.整个处理过程耗时少于15 s,误差小于7.5%.运营结果表明该系统达到了大数据的实时采集、实时分析处理和实时分区控制的可实用目标. A big data-based hot-spot real-time traffic monitoring system is implemented. The system analyzes the passenger flow of each entry in real time, estimates the regular pattern of stay passengers in each hot-spot, and scientifically allocates resources for operation and administration. The period of the real-time processing in the system is shorter than 15 seconds, and the error rate of object detection is less than 7.5%. The operation results show that the system achieves the practical goals of real-time collection, analysis, and processing for big data.
作者 宋瑞 姚郑
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2015年第3期428-431,共4页 Journal of University of Chinese Academy of Sciences
基金 国家科技重大专项(2010ZX03006-001-02)资助
关键词 人员流量监测 大数据 实时计算 微云网络 traffic monitoring big data real-time processing micro cloud network
  • 相关文献

参考文献7

  • 1覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32-45. 被引量:386
  • 2Wlodarczyk T W. Overview of time series storage and processing in a cloud environment[C]//IEEE 4th International Conference on Digital Object Identifier: 10.1109/CloudCom. 2012:625-628. 被引量:1
  • 3Suna S W, Wang Y C, Huang F, et al. Moving foreground object detection via robust SIFT trajectories[J]. Journal of Visual Communication and Image Representation, 2013, 24(3):232-243. 被引量:1
  • 4Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of Imaging Understanding Workshop, 1981:121-130. 被引量:1
  • 5Pérez J S, Meinhardt-Llopis E, Facciolo G. TV-L1 optical flow estimation[J]. Image Processing on Line, 2013, 3:137-150. 被引量:1
  • 6Toshev A, Taskar B, Daniilidis K. Shape-based object detection via boundary structure segmentation[J]. International Journal of Computer Vision archive, 2012, 99 (2):123-146. 被引量:1
  • 7Storm. distributed and fault tolerant realtime computation[CP/OL].[2014-03-10]. 被引量:1

二级参考文献82

  • 1Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18]. 被引量:1
  • 2Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056]. 被引量:1
  • 3Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384]. 被引量:1
  • 4Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30]. 被引量:1
  • 5Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505. 被引量:1
  • 6Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30]. 被引量:1
  • 7Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494]. 被引量:1
  • 8Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008.29-42. 被引量:1
  • 9Xie J, Yin S, Ruan XJ, Ding ZY, Tian Y, Majors J, Manzanares A, Qin X. Improving MapReduce performance through data placement in heterogeneous Hadoop clusters. In: Taufer M, Rfinger G, Du ZH, eds. Proc. of the Workshop on Heterogeneity in Computing (IPDPS 2010). Atlanta: IEEE Press, 2010. 1-9. [doi: 10.1109/IPDPSW.2010.5470880]. 被引量:1
  • 10Polo J, Carrera D, Becerra Y, Beltran V, Torres J, Ayguad6 E. Performance management of accelerated MapReduce workloads in heterogeneous clusters. In: Qin F, Barolli L, Cho SY, eds. Proc. of the ICPP. San Diego: IEEE Press, 2010. 653-662. [doi: 10.1109/ ICPP.2010.73]. 被引量:1

共引文献385

同被引文献17

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部