期刊文献+

极化SAR自适应三分量分解方法 被引量:5

Adaptive Three-component Decomposition Approach for Polarimetric SAR Data
下载PDF
导出
摘要 介绍了原始极化SAR三分量分解中存在的问题,如负功率和散射机制模糊,并深入分析了其改进方法中仍然存在的缺陷,提出了一种自适应的三分量分解。该分解采用了更一般化的散射模型,并首次考虑了像素中存在不同旋转角的两个面或偶次散射目标,然后利用散射Alpha角确定除体散射之外的剩余主导散射机制,使面或偶次散射得到了更充分的保持。最后,从散射模型与极化相干矩阵自适应匹配的角度出发,提出了一种对负功率进行自适应优化的措施,使得负功率像素个数大大减少,从而分解更加准确有效。试验结果表明,该分解所得结果更符合实际地物散射过程,能更好地解决基于模型的分解方法中存在的缺陷。 In this paper,the problems such as negative power and scattering mechanism ambiguity in original polarimetric SAR three-component decomposition are introduced, and the remaining flaws in its improved approaches are in depth analyzed. Based on these,an adaptive three-component decomposition is proposed,and more generalized scattering models are used. Because in one pixel there may exist two odd or double bounce scattering targets with different orientation angels,the proposed method firstly considers this situation,so that the surface and double bounce scattering can be preserved more sufficiently. And then the alpha parameter is used to identify the dominant scattering except for the volume scattering. Lastly,an optimization measure to the pixels with negative power is proposed,which significantly decreases the negative power pixels count,so the decomposition will be more accurate and more valid. The results show great improvements in real scattering characteristics extraction and the flaws in model based decomposition approaches can be better resolved.
出处 《测绘学报》 EI CSCD 北大核心 2016年第9期1089-1095,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家重大科技基础设施建设项目(10FG001A)~~
关键词 极化合成孔径雷达 极化分解 基于模型 一般的散射机制 自适应 polarimetric synthetic aperture radar polarimetric decomposition model-based generalized scattering mechanism adaptive
  • 相关文献

参考文献4

二级参考文献47

  • 1Lemoine G G, De Grandi G F, Sieber A J. Polarimetric Contrast Classification of Agricultural Fields Using MAESTRO1 AIRSAR Data[J]. Int J Remote Sensing, 1994,15(14) :2 851-2 869 被引量:1
  • 2Yueh H A, Swartz A A, Kong J A, et al. Optimal Classification of Terrain Cover Using Normalized Polarimetric Data[J]. J Geophys Res, 1993, 91 (B12): 15 261-15 267 被引量:1
  • 3Lee J S, Grunes M R, Kwok R. Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution[J]. Int J Remote Sensing, 1994, 15(11):2 299-2 311 被引量:1
  • 4Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier. IEEE Trans[J]. Geosci Remote Sensing, 1999, 37 (5): 2 249-2 258 被引量:1
  • 5Cloude S R, Pottier E. An Entropy Based Classification Scheme for Polarimetrie SAR Data[C]. IEEE International Geoscience and Remote Sensing Symposium, Florence, 1995 被引量:1
  • 6Lee J S, Mitchell R, Pottier G E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics. IEEE Trans. Geosci[J]. Remote Sensing, 2004,42(4) : 722-731 被引量:1
  • 7Yoshio Yamaguchi, Toshifumi Moriyama, Motoi Ishido, et al. Four-Component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Trans Geosci Remote Sensing, 2005, 43(8) : 1 699- 1 706 被引量:1
  • 8LEE J S, POTTIER E. Polarimetric Radar Imaging: from Basics to Applications [ M ]. Boca Raton: CRC Press, 2009. 被引量:1
  • 9FORMONT P, PASCAL F, VASILE G, et al. Statistical Classification for Heterogeneous Polarimetric SAR Images [J]. IEEE Selected Topics in Signal Processing, 2011, 5 (3): 567-576. 被引量:1
  • 10HOEKMAN D H, VISSERS M A M, TRAN T N. Unsu- pervised Full Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):402-411. 被引量:1

共引文献49

同被引文献48

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部