期刊文献+

基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究 被引量:25

Polarimetric SAR Data Classification with Freeman Entropy and Anisotropy Analysis
下载PDF
导出
摘要 极化SAR影像中阴影、水体和裸露的耕地3种地物类型有非常相似的极化散射特性,常规基于非相干分解的分类方法难以将其有效地区分。对此,本文引入基于Freeman分解的散射熵Hf和各向异性度Af两个特征参数,并将其用于极化SAR影像分类。首先利用Hf和Af参数将阴影和水体提取出来,然后将其他地物按散射机制分为3大类,并对每一类再次利用Hf和Af参数进行细分,最后通过基于Wishart分布的聚类和迭代分类,得到最终的分类结果。通过利用Radarsat-2在河南登封获取的全极化SAR数据进行试验,表明该算法执行效率高,能够有效地区分阴影、水体和裸露的耕地,并且对其他地物类型也有很好的分类效果。 The unsupervised classification of preserving polarimetric scattering characteristics is a classic classification method. But this method cannot classify the different objects with similar main scattering mechanism powers, especialry for shadow, water and bare soil, which have very low backscattering powers. So the entropy and anisotropy parameters based on Freeman three-component decomposition is introduced, and applied into polarimetric SAR classification. Before applying the decomposition, a polarimetric orientation compensation (P^C) procedure is performed for a better result. And then, the entropyH^and anisotropyAt are calculated after Freeman decomposition. Through choosing appropriate values ofHf andAf , the shadow and water can be extracted out. The other pixels are then divided into three categories by their dominant scattering mechanisms. Each category is divided into25-100 classes by the Hf-Af plane to preserve the purity of scattering characteristics, and merged into specified number of classes by Wishart distance measure. At last pixels in each category are iteratively classified by the Wishart classifier independently, A Radarsat-2 C band polarimetric SAR image was used to illustrate the effectiveness of the proposed method.
出处 《测绘学报》 EI CSCD 北大核心 2012年第4期556-562,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(60890074) 国家863计划(2011AA120404) 中央高校基本科研业务费专项资金(201161902020003)
关键词 极化SAR 分类 Freeman分解 散射熵 各向异性度 polarimetric SAR classification Freeman decomposition entropy anisotropy
  • 相关文献

参考文献22

  • 1卢丽君,张继贤,王腾.一种基于高分辨率雷达影像以及外部DEM辅助的复杂地形制图方法[J].测绘学报,2011,40(4):459-463. 被引量:16
  • 2万红林,焦李成,辛芳芳.基于交互式分割技术和决策级融合的SAR图像变化检测[J].测绘学报,2012,41(1):74-80. 被引量:8
  • 3郭华东等著..雷达对地观测理论与应用[M].北京:科学出版社,2000:517.
  • 4LEE J S, POTTIER E. Polarimetric Radar Imaging: from Basics to Applications [ M ]. Boca Raton: CRC Press, 2009. 被引量:1
  • 5FORMONT P, PASCAL F, VASILE G, et al. Statistical Classification for Heterogeneous Polarimetric SAR Images [J]. IEEE Selected Topics in Signal Processing, 2011, 5 (3): 567-576. 被引量:1
  • 6HOEKMAN D H, VISSERS M A M, TRAN T N. Unsu- pervised Full Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):402-411. 被引量:1
  • 7CLOUDE S R, POTTIER E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78. 被引量:1
  • 8LEEJ S, GRUNES M R, AINSWORTH T L, et al. Unsupervised Classification Using Polarimetric Decomposition and Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5) : 2249-2258. 被引量:1
  • 9POTTIER E, LEE J S. Application of the H/A/alpha Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution [C]//Proceeding of Committee on Earth Observing Satellites SAR Workshop.[S. l.]: Geophysical Institute, 1999 : 335-340. 被引量:1
  • 10FERRO FAMIL L, POTTIER E. Unsupervised Classifi cation of Multi frequency and Fully Polarimetric SAR Images Based on the H/A/Alpha Wishart Classifier[J]. IEEE Transactions on Geoscienee and Remote Sensing, 2001,39(11): 2332-2342. 被引量:1

二级参考文献79

  • 1周建民,李震,李新武.基于ALOS/PALSAR雷达干涉数据的中国西部山谷冰川冰流运动规律研究[J].测绘学报,2009,38(4):341-347. 被引量:26
  • 2Cloude S R and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR [J]. IEEE Trans. on GRS, 1997, 35(1): 68-78. 被引量:1
  • 3Lee J S, Grunes M R, and Ainsworth T L. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [J]. IEEE Trans. on GRS, 1999, 37(5): 2249-2258. 被引量:1
  • 4Lee J S, Grunes M R, and Pottier E. Unsupervised terrain classification preserving polarimetric scattering characteristics [J]. IEEE Trans. on GRS, 2004, 42(4):722-731. 被引量:1
  • 5Putignano C, Schiavon G, and Solimini D. Unsupervised classification of a central Italy landscape by polarimetric L-band SAR data [C]. IEEE IGARSS Proceedings, 2005: 1291-1294. 被引量:1
  • 6Lumsdon P, Cloude S R, and Wright G. Polarimetric classification of land cover for Glen Affric radar project [J]. IEE proceedings, on Radar Sonar Navigation, 2005, 152(6): 404-412. 被引量:1
  • 7Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data [J]. IEEE Trans. on GRS, 1998, 36(3): 963-973. 被引量:1
  • 8Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data[J]. IEEE Trans. on GRS, 1989, 27(1): 36-45. 被引量:1
  • 9Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(2): 498-518. 被引量:1
  • 10Cloude S R and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Trans. on Geoseience and Remote Sensing, 1997, 35(1): 68-78. 被引量:1

共引文献77

同被引文献207

引证文献25

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部