期刊文献+

211Z.X耐热高强韧铝合金热变形行为及加工图研究 被引量:4

Research on Hot Compressive Deformation and Processing Map of 211Z.X Heat-resisting High Strength Aluminium Alloy
下载PDF
导出
摘要 在Gleeble-3500热模拟试验机上对211Z.X耐热高强韧铝合金进行了等温热压缩实验,实验的应变温度为350~500℃、应变速率为0.01~10s^(-1)。研究了不同变形条件下的流变特征,并分析该合金高温变形时流变应力的规律,构建了材料流变应力本构模型;同时基于动态材料模型建立了加工图,确立了该合金在实验条件的最佳工艺参数。结果显示:功率耗散图与失稳图随应变量的增加而变化,功率耗散峰区由3个逐渐减为1个,失稳区域随应变而移动并逐渐增大;在加工图中,随着应变的增大,安全加工区域逐渐减小。综合加工图与微观组织的分析结果,211Z.X铝合金最佳的加工工艺区间为:变形温度485~500℃、应变速率0.03~10s^(-1)。 The hot deformation behaviors of 211Z. X aluminum alloy had been studied on Gleeble-3500 thermal simulation test machine in the temperature range of 350-500℃ and the strain rates range of 0. 01-10 s^-1. The flow behavior and the law of the high temperature deformation were investigated. The constitutive relation model of flow stress was established based on the experiment data. And the processing map was established based on the dynamic materials modeling (DMM). And the optimal processing parameters of 211Z. X aluminum alloy were attained from the processing map. The results showed that the power dissipation map and the instability map changed with the increase of strain rate. The peak domains of power dissipation map decreased and the instability zones of flow behavior moved and increased with the increase of strain rate, meanwhile, the processing safety area of processing map reduced. According to the experimental results including processing map and microstructure, the optimal deformation interval range can be attained, which are T=485-500 ℃, e =0. 03-10 s^-1.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第18期143-148,154,共7页 Materials Reports
基金 国家自然科学基金(51461006) 贵州省科技厅重大专项(黔科合重大专项字(2010)6007号) 贵州大学研究生创新基金(研理工2016023)
关键词 211Z.X耐热高强韧铝合金 热压缩变形 加工图 211Z. X heat-resisting high strength aluminum alloy, hot compressive deformation, processing map
  • 相关文献

参考文献18

  • 1黄朝文,梁益龙,杨明,徐平伟,李祥,梁宇.211Z.X耐热高强韧铝合金的疲劳特性[J].金属热处理,2013,38(2):43-47. 被引量:12
  • 2Han N M, Zhang X M, l.iu S l). et al. Effects of pre-stretehing and ageing n tl'e strength md fracture toughness of aluminum aloy 7050[J]. MaterSciEngA,2011,528(s10-11):3714. 被引量:1
  • 3Chemin A, Mtrques D. Bisanha L, et al. Influence of A17cueFc in- termetallic particles on the localized corrosioll (3f high strength alumi- num alloys[J]. Mat er Des. 2014,53 ( 1 ) : 118. 被引量:1
  • 4肖罡,李落星,刘志文,叶拓.6013铝合金的热变形行为及热加工图[J].材料热处理学报,2014,35(10):23-28. 被引量:20
  • 5Li H Z, Wang H J, et al. Hot deformation and proces-sing map of 2519A aluminum alloy[J]. Mater Sci Eng A,2011,528(3):11548. 被引量:1
  • 6Jonas J J, Sellars C M, fegarl W J M. Slrength and struclure under hol-working conditions[J]. Int Maler Roy, 1969,14 ( 14 ) : 1. 被引量:1
  • 7Mcqueen H J, Ryan N D. Conslitulive analysis in hm working[J]. Mater Sci Eng A, 2002,322 ( 1 ) :43. 被引量:1
  • 8Zener C, Hollomon J H. Effect of strain-rate upon the plaslic flow ofstcel[J]. J ApplPhys, 1994,15(1):22. 被引量:1
  • 9Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstruclural control[J ]. Im Mal Rev. 1997,43(6) : 243. 被引量:1
  • 10Rao K P. Doraivelu S M, Roshan H M. et al. Deformation proces- sing of an aluminum alloy contailting particles: Studies on A]-5 pet Si alloy 4043[J]. Metall Matcr Trans A. 198:3,14(8) : 1671. 被引量:1

二级参考文献57

共引文献64

同被引文献37

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部