期刊文献+

基于海量日志的入侵检测并行化算法研究 被引量:4

Research on intrusion detection parallel algorithm based on massive logs
下载PDF
导出
摘要 随着计算机技术和互联网的迅猛发展,对海量日志进行分析并进行入侵检测就成为重要的研究问题。针对这一现象,提出在Hadoop平台下利用并行化的数据挖掘算法对海量的日志信息进行分析从而进行入侵检测,然后利用搭建好的Hadoop集群环境对其进行验证,对不同大小的日志文件进行处理,并与单机环境下对比,证明在该平台下进行入侵检测的有效性和高效性,同时实验证明如果增大集群中的节点数目,执行效率也会相应的提高。 With the rapid development of computer technology and Internet, how to analyze the massive logs and perform the intrusion detection become the important research contents. To soleve these difficulties, the parallel data mining algorithm is used to analyze the massive logs information on Hadoop platform, so as to perform the intrusion detection. The established Hadoop cluster environment is used to verify the intrusion detection, and process the log files with different sizes. In comparison with the intrusion detection result verified in the stand-alone environment, the effectiveness and efficiency of the intrusion detec- tion on Hadoop platform were verified. And the experiment results verify that if the node quantity in the cluster is increased, the execution efficiency will be improved accordingly.
作者 高华
机构地区 大连艺术学院
出处 《现代电子技术》 北大核心 2016年第19期71-75,共5页 Modern Electronics Technique
基金 辽宁省职业技术教育学会2015-2016年度科研项目:高职院校智慧教育云计算辅助教学平台的构建与应用研究(LZY15531)阶段性成果之一
关键词 HADOOP 日志信息分析 入侵检测 并行化算法 Hadoop log information analysis intrusion detection parallel algorithm
  • 相关文献

参考文献8

二级参考文献30

  • 1张博,李伟华,布日古德.数据挖掘中的关联规则在入侵检测系统中的应用[J].航空计算技术,2004,34(4):124-127. 被引量:5
  • 2宋世杰,胡华平,胡笑蕾,金士尧.数据挖掘技术在网络型误用入侵检测系统中的应用[J].计算机工程,2004,30(16):126-127. 被引量:9
  • 3史亮,李斌,庄镇泉.基于多主体技术的分布式入侵检测系统的研究与设计[J].计算机工程与科学,2005,27(2):5-8. 被引量:2
  • 4Lee Wen-ke. A framework for constructing features and models for intrusion detection systems [ J]. ACM Transactions on Information and System Security,2000,3 (4) : 227-261. 被引量:1
  • 5Denning D E. An intrusion-detection model [ J ]. IEEE Transaction on Software Engineering, 1987,13:222-232. 被引量:1
  • 6Heberlein L T. A network security monitor [C]//Proceeding of the IEEE Symposium on Researching Security and Privacy. Oakland, CA : IEEE, 1990:296-304. 被引量:1
  • 7Petrovic S,Alvarez G,Orfila A. Labelling clusters in an intrusion detection system using a combination of elustering evaluation techniques [ A ]. The 39th International Conference on System Sciences ,Hawaii, 2006. 被引量:1
  • 8Guan Y, Ghorbani AA, Belacel N. Y-means:a clustering method for intrusion detection[A]. Proceedings of Canadian Conference on Electrical and Computer Engineering, Montreal, Canada, 2003. 被引量:1
  • 9Portnoy L,Eskin E,Stolfo S. Intrusion detection with unlabeled data using clustering[ A]. ACM Workshop on Data Mining Applied to Security,Philadelphia, PA, 2001. 被引量:1
  • 10Hu W, Li J, Chen B. Optimal evaluation of feature selection in intrusion detection modeling[ A], The 6th World Congress on Intelligent Control and Automation,Dalian, China, 2006. 被引量:1

共引文献26

同被引文献40

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部