期刊文献+

混合Copula模型选择策略及其在风电功率中的应用 被引量:1

Mixed Copula Model Selection Strategy and Its Application in Wind Power
下载PDF
导出
摘要 本文提出了混合Copula模型中Copula函数的选择策略,针对目前多数文献集中于阿基米德族进行选择,导致性质相似、共性较强的局限,扩大了选择范围,增加椭圆族作为备选,利用频率直方图,结合单一Copula函数的AIC值从中筛选,进而确定出引入混合Copula模型的函数,并将此方法应用于风电功率相关性分析中,得出由椭圆族和阿基米德族中的t-Copula、Clayton Copula、Frank Copula组成的混合Copula模型相较于阿基米德族混合Copula模型AIC值更小,拟合效果更优的结论,证明了该方法的有效性。 Aiming at the limitations caused by similarity and great commonality as most of litera-ture select from Archimedes Copula family, this paper proposes a mixed Copula model selection strate-gy from Copula functions which expands the range of selection and increases the ellipse family as an al-ternative, that is, combines frequency histogram with AIC value of a single Copula function to deter-mine the Copula functions which form a mixed Copula model. Then applies this method to wind powercorrelation analysis, comparing with the traditional mixed Copula model which consists of ArchimedesCopula family, the mixed Copula model of optimum strategy which is composed of t-Copula, ClaytonCopula, Frank Copula selected from ellipse family and Archimedes Copula family has a smaller AICvalue and a better fitting effect, thus demonstrates the effectiveness of this method.
作者 孟瑞雪 魏立力 MENG Ruixue WEI Lili(College of Mathematics and Computer, Ningxia University, Ningxia Yinchuan 750021)
出处 《内蒙古工业大学学报(自然科学版)》 2016年第2期93-98,共6页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11261044) 宁夏大学研究生创新资助项目(GIP2015034)
关键词 混合Copula模型 核密度估计 EM算法 BFGS算法 Mixed Copula Kernel density estimation EM algorithm BFGS algorithm
  • 相关文献

参考文献9

  • 1Harry J. Dependence Modeling with Copulas[M]. New York: CRC Press, 2014. 被引量:1
  • 2Hu L. Essays in Econometrics with Application in Macroeconomie and Financial Modeling[D]. New Haven: Yale U- niversity,2002. 被引量:1
  • 3季峰,蔡兴国,王俊.基于混合Copula函数的风电功率相关性分析[J].电力系统自动化,2014,38(2):1-5. 被引量:59
  • 4孙志宾.混合Copula模型在中国股市的应用[J].数学的实践与认识,2007,37(20):14-18. 被引量:10
  • 5Nelson R B. An Introduction to Copulas[M]. New York..Springer,2006. 被引量:1
  • 6Sklar A. Fonctions de repartition dn dimensions et leurs marges[J]. Publication de I Institut de Statistique de I Universite de Paris. 1959,8:229-231. 被引量:1
  • 7魏立力,马江洪,颜荣芳编著..概率统计引论[M].北京:科学出版社,2012:354.
  • 8Parzen E. On the estimation of a probability density function and method[J]. Ann. Mathstatist. 1962,38: 1065- 1076. 被引量:1
  • 9McLachlan G J. The EM Algorithm and Extensions (Second Edition) [M]. New York: Wiley Sons, Inc, 2008. 被引量:1

二级参考文献24

  • 1孙志宾,顾岚.Copula理论在金融中的应用[J].广西师范大学学报(自然科学版),2004,22(2):47-51. 被引量:7
  • 2高德宾,李群,金元,于骏,张健男.东北电网风电运行特性分析与研究[J].电力技术,2010(2):33-37. 被引量:19
  • 3王璐,王沁,庞皓.股票收益率尾部相关性的Copula度量及模拟[J].数学的实践与认识,2007,37(10):57-61. 被引量:13
  • 4Nelsen R B. An Introduction to Copulas[M].Springer Verlag, New York,1998. 被引量:1
  • 5Dempster et al. Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion)[J].Journal of the Royal Statistical Society.Series B,1997,39:1-38. 被引量:1
  • 6PAPAERTHYMIOU G,SCHAVEMAKER P H,VANDERSLUIS L. Integration of stochastic generation in power systems[J].{H}International Journal of Electrical Power & Energy Systems,2006,(9):655-667. 被引量:1
  • 7PAGAEFTHYMIOU G. Using Copulas for modeling stochastic dependence in power system uncertainty analysis[J].{H}IEEE Transactions on Power Systems,2009,(1):40-49. 被引量:1
  • 8VALIZADEH H H,TAVAKOLI B M,GOLKAR M A. Using Copulas for analysis of large datasets in renewable distributed generation:PV and wind power integration in Iran[J].{H}RENEWABLE ENERGY,2010,(9):1991-2000. 被引量:1
  • 9BESSA R J,MENDES J,MIRANDA V. Quantile-Copula density forecast for wind power uncertainty modeling[A].Trondheim,Norway,2011.8p. 被引量:1
  • 10PAPAEFTHYMIOU G. Integration of stochastic generation in power systems[D].Delft,the Netherlands:Delft University of Technology,2007. 被引量:1

共引文献63

同被引文献23

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部