期刊文献+

PCRM的改进及其在人体行为识别中的应用 被引量:3

Improved PCRM and its application in human action recognition
下载PDF
导出
摘要 为完整有效地表征行为人体中的运动强度和运动趋势,提高人体行为识别算法准确率,利用光流特征算法对像素变化比率图进行改进,并采用多帧叠加和网格法进行特征的提取。该特征包含全局动态运动信息和局部运动位置信息,能够更好地描述行为。使用距离度量学习算法得到视频片段描述特征,使用支持向量机和多任务大边界最近邻的联合分类器进行分类,实现人体行为的识别。实验结果表明,该方法识别率相较之前算法能够提高约12%,与传统算法相比也有很大提高。 To effectively characterize the moving target exercise intensity and trends and improve the accuracy of human action recognition algorithms,optical flow algorithm was used to improve pixel change ratio map.Multi-frame overlays and grid method were used to do feature extraction and description.This feature contained global motion information and local position information,which described the behavior better.The video feature representations were obtained through the distance metric learning.Support vector machine classifier and multi-task large margin nearest neighbor were combined and scoring mechanism for joint classification was used to achieve action recognition.Experimental results show that the proposed scheme can obtain great increase in the accuracy by about 12% compared to the existing methods,and also it is superior to conventional algorithms.
出处 《计算机工程与设计》 北大核心 2016年第9期2515-2519,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61161006)
关键词 行为识别 光流特征 像素变化比率图 度量学习 支持向量机 action recognition optical flow feature pixel change ratio map metric learning support vector machine
  • 相关文献

参考文献4

二级参考文献165

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2Laptev I,Lindeberg T.On space-time interest points [J].International Journal of Computer Vision,2005,64(2/3):107-123. 被引量:1
  • 3Ahad M A R.Motion history image [M]//Motion History Images for Action Recognition and Understanding.London:Springer,2013:31-76. 被引量:1
  • 4Wang H,Klaser A,Schmid C,et al.Action recognition by dense trajectories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2011:3169-3176. 被引量:1
  • 5Chaudhry R,Ravichandran A,Hager G,et al.Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2009:1932-1939. 被引量:1
  • 6Fehr J,Burkhardt H.3D rotation invariant local binary patterns [C]//Proceedings of the 19th International Conference on Pattern Recognition.Washington D C:IEEE Computer Society Press,2008:1-4. 被引量:1
  • 7Scovanner P,Ali S,Shah M.A 3-dimensional SIFT descriptor and its application to action recognition [C]//Proceedings of the 15th International Conference on Multimedia.New York:ACM Press,2007:357-360. 被引量:1
  • 8Junejo I N,Aghbari Z A.Using SAX representation for human action recognition [J].Journal of Visual Communication and Image Representation,2012,23(6):853-861. 被引量:1
  • 9Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation [J].Journal of Machine Learning Research,2003,3(4/5):993-1022. 被引量:1
  • 10Blei D M,McAuliffe J D.Supervised topic models [C]//Proceedings of the 21st Annual Conference on Neural Information Processing Systems.Cambridge:MIT Press,2007:121-128. 被引量:1

共引文献144

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部