期刊文献+

基于低秩分解的联合动态稀疏表示多观测样本分类算法 被引量:3

Multiple Observation Sets Classification Algorithm Based on Joint Dynamic Sparse Representation of Low-Rank Decomposition
下载PDF
导出
摘要 通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图像变换域,使得变换图像可以分解成一个低秩矩阵和一个相关的稀疏误差矩阵;然后对低秩矩阵和稀疏误差矩阵分别进行联合动态稀疏表示,以便充分利用类级的相关性和原子级的差异性,即使多观测样本的稀疏表示向量在类级别上分享相同的稀疏模型,而在原子级上采用不同的稀疏模型;最后利用总的稀疏重建误差进行类别判决.在CMU-PIE人脸数据库、ETH-80物体识别数据库、USPS手写体数字数据库和UMIST人脸数据库上进行对比实验,实验结果表明本方法的优越性. Multiple unconsWained observations of the same object can be easily accessed by the Intemet, with regard to over- coming the identification-difficult of the unconstrained samples. Moreover, to exploit the information of multiple observation sets to improve the classification performance, a multiple observation sets classification algorithm based on joint dynamic spare representa- tion of low-rank decomposition is presented. First of all, we need find the best set of image transform domain, which decomposes the data ma~_x into a low-rank matrix and an associated sparse error matrix. Secondly, the low-rank matrix and sparse error matrix is represented by joint dynamic sparsity respectively, in order to make full use of the correlation of the class-level and the differences of the atom-level,i, e, the sparse representation vectors for the multiple observations can share the same class-level sparsity pattern while their atom-level sparsity patterns may be distinct.Finally, we compare the classification results with the total sparse reconslruc- tion errors. Three comparative experiments are conducted on CMU-PIE face dataset, ETH-80 object recognition dataset, USPS hand- written digit dataset,and UMIST face dataset, and the results demonstrate the superiority of the proposed algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第3期440-446,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071199)
关键词 模式识别 多观测样本分类 低秩矩阵恢复 联合动态稀疏表示 pattern recognition multiple observation sets classification low-rank matrix recovery joint dynamic sparse representation
  • 相关文献

参考文献17

  • 1Dong Xu, Yi Huang, Zinan Zeng, Xinxing Xu.Human gait recognition using patch distribution feature and locality-constrained group sparse representation[J].IEEE Transactions on Image Processing, 2012, 21(1):316-326. 被引量:1
  • 2ZHAO Nan XU Xin YANG Yi.Sparse Representations for Speech Enhancement[J].Chinese Journal of Electronics,2011,20(2):268-272. 被引量:9
  • 3Zhu Hao, Giannakis Georgios B.Sparseovercomplete representations for efficient identification of power line outages[J].IEEE Transactions on Power Systems, 2012, 27(4):2215-2224. 被引量:1
  • 4Wright John, Yang Allen Y, Ganesh Arvind, Ma Yi.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. 被引量:1
  • 5ZHANG Lihe,ZHANG Kunyu.Weighted Discriminative Sparse Coding for Image Classification[J].Chinese Journal of Electronics,2014,23(1):104-108. 被引量:4
  • 6Huang Ke, Aviyente Selin.Sparse representations for signal classification[A].20th Annual Conference on Neural Information Processing Systems[C].Vancouver BC:NIPS, 2007.609-616. 被引量:1
  • 7Elad Michael, Aharon Michal.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing, 2006, 15(12):3736-3745. 被引量:1
  • 8Ramirez Ignacio, Sprechmann Pablo, Sapiro Guillermo.Classification and clustering via dictionary learning with structured incoherence and shared features[A].Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C].San Francisco:IEEE, 2010.3501-3508. 被引量:1
  • 9Chia-Po Wei, Yu-Wei Chao, Yi-Ren Yeh, Yu-Chiang Frank Wang.Locality-sensitive dictionary learning for sparse representation based classification[J].Pattern Recognition, 2013, 46(5):1277-1287. 被引量:1
  • 10He Ran, Zheng Wei-shi, Hu Bao-Gang, Kong Xiang-Wei.Nonnegative sparse coding for discriminative semi-supervised learning[A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Colorado Springs:IEEE, 2011.2849-2856. 被引量:1

二级参考文献1

共引文献11

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部