期刊文献+

基于RPCA视频去噪算法的自适应优化方法 被引量:1

AN ADAPTIVE OPTIMISATION METHOD BASED ON RPCA VIDEO DENOISING
下载PDF
导出
摘要 传统去噪算法不能在尽量滤除噪声的同时很好地保持原始图像信息。针对这种情况,提出基于鲁棒主成分分析的自适应视频去噪算法。首先根据视频数据的低秩性和噪声的稀疏性,利用加速近端梯度方法重建出原始视频的低秩部分和稀疏部分,实现噪声的初步分离;其次利用自适应中值滤波器进行预滤波处理,提高块匹配精度,进一步去除视频噪声;最后引入自适应奇异值阈值法,增强图像细节边缘信息,降低迭代优化算法的时间复杂度。实验结果表明,该方法不仅能极大程度地恢复出原始视频序列,还能自适应地去除干扰噪声。不论从客观指标PSNR值还是从主观视觉,该方法与传统去噪方法相比都具有很大的优势。 Traditional denoising algorithm cannot well reserve primitive image information while filtering the noise as much as possible. In light of this situation, the paper presents an RPCA-based adaptive video denoising algorithm. First, according to the low-rank property of video data and the sparsity of noise, it utilises the accelerated proximal gradient approach to reconstruct the low-rank component and sparse component of original video, and realises the initial separation of the noise. Then, it uses adaptive median filter to make pre-processing of filtration to improve block matching accuracy, and further removes video noise. Finally, it introduces adaptive singular-value threshold method to enhance the detailed edge information of image, reduces the time complexity of iterative optimisation algorithm. It is demonstrated by experimental result that the proposed algorithm can restore original video sequence to a great deal extent, besides it can also adaptively remove interference noise. The algorithm has significant advantage no matter in objective quantitative indicator PSNR or subjective vision quality compared with traditional denoising algorithms.
出处 《计算机应用与软件》 CSCD 2016年第9期215-220,共6页 Computer Applications and Software
关键词 视频去噪 低秩性 鲁棒主成分分析 自适应奇异值阈值 Video denoising Low-rank property Robust principal component analysis (RPCA) Adaptive singular-value threshold
  • 相关文献

参考文献17

  • 1Ji H, Huang S, Shen Z, et al. Robust video restoration by joint sparse and low rank matrix approximation [ J ]. SIAM Journal on Imaging Sci- ences, 2011,4(4) :1122 - 1142. 被引量:1
  • 2Dong W, Shi G, Li X. Nonloeal image restoration with bilateral vari- ance estimation: a low-rank approach[ J]. IEEE Trans on Image Pro- cessing, 2012,2 ( 22 ) : 700 - 711. 被引量:1
  • 3Ji H, Liu C, Shen Z, et al. Robust video denoising using low rank matrix completion [ C 1//In Computer Vision and Pattern Recognition ( CVPR), 2010 IEEE Conference on,2010 : 1791 - 1798. 被引量:1
  • 4Cand6s C, Romberg J. Sparsity and incoherence in compressive sam- piing[ J]. Inverse Problems, 2007, 23 (3) :969 - 985. 被引量:1
  • 5郑毅贤,江浩淼,金波,张爱新.基于自适应压缩感知的图像去噪方法[J].通信技术,2013,46(3):74-76. 被引量:4
  • 6任倩儒..压缩感知理论及其在图像去噪中的应用研究[D].长安大学,2012:
  • 7郑毅贤..基于稀疏表示理论的图像去噪方法研究[D].上海交通大学,2013:
  • 8唐中和..低秩逼近理论及其在自然图像去噪中的应用[D].西安电子科技大学,2013:
  • 9樊立..压缩感知在图像去噪中的应用研究[D].北方工业大学,2013:
  • 10邹建成,樊立.一种基于压缩感知的图像去噪方法[J].北方工业大学学报,2012,24(1):1-3. 被引量:3

二级参考文献151

  • 1高智芳,张新家.基于小波变换的除噪方法及其应用研究[J].信息安全与通信保密,2007,29(6):102-104. 被引量:16
  • 2Donoho D L. Compressed sensing [J]. IEEE Trans. Inform. Theory, 2006,52(4):1289-1306. 被引量:1
  • 3Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007,24 : 118-121. 被引量:1
  • 4Rafael C Gonzalez,Richard E Woods.数字图像处理[M].阮秋琦,阮宇智,等,译.北京:电子工业出版社,2010. 被引量:3
  • 5Michael Elad. Sparse and Redundant Representations[M]. London: Springer Science, 2010. 被引量:1
  • 6J Tropp A Gibert. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Inform. Theory. 2008, 12, 53 (12) ;4655-4666. 被引量:1
  • 7Guleryuz O G. Nonlinear approximation based image recovery using Adaptive sparse reconstructions and iterated denoising[J]. IEEE Trans. Iraage Proces, 2005,15(3)539-553. 被引量:1
  • 8张强,王正林.精通MATLAB图像处理[M].北京:电子工业出版社,2010. 被引量:1
  • 9Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, et al. Image denoising with block-matching and 3D filtering [ J ]. Proc. SPIE Elec- tronic Imaging 06, San Jose,California,USA,January 2006(61364A-30). 被引量:1
  • 10Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, et al. Image denoising by sparse 3 D transform-domain collaborative filtering[ J ]. IEEE Transactions on Image Processing, August 2007,16 ( 8 ). 被引量:1

共引文献223

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部