期刊文献+

基于FPGA的低秩矩阵恢复算法研究与应用 被引量:1

Research and Application of Low Rank Matrix Recovery Algorithm Based on FPGA
下载PDF
导出
摘要 低秩矩阵恢复算法主要包括鲁棒主成分分析、矩阵补全、低秩表示,由于矩阵补全是一个NP难的问题,低秩表示涉及到字典矩阵,复杂度高,因此本文主要针对鲁棒主成分分析在FPGA上的研究与应用进行了描述,并且在CPU以及FPGA上实现了图像恢复。实验结果表明,基于FPGA的HLS设计相对于传统CPU在速度上得到了数十倍的提高。 The low rank matrix recovery algorithm mainly includes the robust principal component analysis, the matrix completion, the low rank representation. Because the matrix completion is a NP hard problem, the low rank said relates to the dictionary matrix, high complexity. Therefore,this paper mainly described the research and application of the robust principal component analysis in FPGA,and the CPU and FPGA image restoration is realized. The experimental results show that the speed of the design based on the FPGA HLS has been increased by tens of times compared to the traditional CPU.
作者 沈镇 柴志雷
出处 《单片机与嵌入式系统应用》 2017年第2期11-14,共4页 Microcontrollers & Embedded Systems
关键词 低秩矩阵恢复 鲁棒主成分分析 FPGA HLS low-rank matrix recovery robust principal component analysis FPGA HLS
  • 相关文献

参考文献2

二级参考文献30

  • 1JIANG Xu-dong. Linear subspace learning-based dimensionality reduction [ J ]. I EEE Signal Processing Magazine,2011,28 ( 2 ) : 16- 26. 被引量:1
  • 2DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52 (4) : 1289-1306. 被引量:1
  • 3CANDES E J, MICHAEL W. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25(2) :21-30. 被引量:1
  • 4WRIGHT J, ALLEN Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2009,31 ( 2 ) :210-227. 被引量:1
  • 5WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition [ J ]. Proceedings of the IEEE,2010, 98(6) :1031-1044. 被引量:1
  • 6WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis : exact recovery of corrupted low-rank matrices via convex optimization [ C ]//Proc of the 24th Annual Conference on Neural Information Processing Systems. 2009 : 2080-2088. 被引量:1
  • 7CANDES E J, LI Xiao-dong, MA Yi, et al. Robust principal component analysis? [J]. dournal of the AOM,2011,58(3) :1-37. 被引量:1
  • 8XU Huan, CARAMANIS C, SANGHAVI S. Robust PCA via outlier pursuit [ J]. IEEE Trans on Information Theory, 2012,58 ( 5 ) : 3047- 3064. 被引量:1
  • 9CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics,2009,9 (6) :717-772. 被引量:1
  • 10CANDES E J, TAO T. The power of convex relaxation : Near-optimal matrix completion[ J]. IEEE Trans on Information Theory,2010, 56 ( 5 ) :2053- 2080. 被引量:1

共引文献71

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部