期刊文献+

柠檬酸改性棉纤维铁配合物的制备及其对染料的光催化降解作用 被引量:3

Preparation of Fe-citric acid modified cotton fiber complex and their catalytic effect for dye degradation
下载PDF
导出
摘要 使用工业化的轧-烘-焙工艺对棉织物进行柠檬酸改性以引入羧基,然后与Fe^(3+)进行配位反应制备柠檬酸改性棉纤维铁配合物。在经过SEM、FT-IR、DRS和TGA表征的基础上,将柠檬酸改性棉纤维铁配合物作为非均相Fenton反应催化剂应用于偶氮染料的降解反应中,重点考察了其催化性能。结果表明,Fe^(3+)初始浓度和反应温度的提高均有利于柠檬酸改性棉织物与Fe^(3+)之间的配位反应,并能够显著增加配合物的铁离子含量。柠檬酸改性棉纤维铁配合物作为非均相Fenton反应催化剂在暗态时能够促进偶氮染料的降解反应,辐射光能明显加强其催化活性,而增加其铁离子含量或引入Cu^(2+)具有进一步改善其催化活性的作用。 Cotton woven fabric was firstly modified with citric acid by a conventional pad-dry-cure process,and then coordinated with Fe^3+ions to prepare a Fe-citric acid modified cotton fiber complex.After the characterizing by SEM,FT-IR,DRS and TGA,catalytic performance of the complex was evaluated as a heterogeneous Fenton catalyst for the degradation of azo dye in water.The results indicated that Fe^3+ion initial concentration and temperature enhanced the coordination of citric acid modified cotton fiber and Fe^3+ions and significantly increased the Fe ion content of the resulting complex.Dye degradation was significantly accelerated by the presence of the complex as a heterogeneous Fenton catalyst in the dark.The catalytic performance of the complex was improved under light irradiation.Additionally,it catalytic activity was further promoted by increasing the Fe content or introduction of Cu^2+ions.
出处 《功能材料》 EI CAS CSCD 北大核心 2016年第9期9197-9201,9206,共6页 Journal of Functional Materials
基金 天津市应用基础与前沿技术研究计划重点资助项目(11JCZDJC24600) 国家自然科学基金资助项目(2020773093)
关键词 棉纤维 柠檬酸改性 金属配合物 FENTON反应 染料降解 cotton fiber citric acid modification metallic complex Fenton reaction dye degradation
  • 相关文献

参考文献2

二级参考文献29

  • 1詹怀宇,李志强,蔡再生.纤维化学与物理.北京:科学出版社,1991:498 被引量:2
  • 2Dhananjeyan, M. R.; Kiwi, J.; Albersb, E Helv. Chim. Acta 201}1, 84, 3433. 被引量:1
  • 3Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242, 123. doi: 10.1016/S0926-860X(02)00511-2. 被引量:1
  • 4Parra, S.; Guasaquillo, I.; Enea, O.; Mielczarski, E.; Mielczarki, J.; Albers, P.; Kiwi-Minsker, L.; Kiwi, J. J. Phys. Chem. B 2003, 107, 7026. doi: 10.1021/jp030045x. 被引量:1
  • 5Ishtehenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl.Catal. A 2003, 242, 221. doi: 10.1016/S0926-860X(02)00512-4. 被引量:1
  • 6Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011, 189, 241. doi: 10.1016/j.jhazmat.2011.02.026. 被引量:1
  • 7董永春,杜芳,韩振邦.物理化学学报,2008,24,2114.doi:10.3866/PKU.WHXB20081130. 被引量:1
  • 8Fernandez, J.; Dhananjeyan, M. R.; Kiwi, J. J. Phys. Chem. B 2000, 104, 5298. 被引量:1
  • 9Dong, Y. C.; Dong, W. J.; Han, Z. B. Catal. Today 2011, 175, 346. doi: 10.1016/j.cattod.2011.03.035. 被引量:1
  • 10Liu, X.; Tang, R.; He, Q.; Liao, X.; Shi, B.1. Hazard. Mater 2010, 174, 687. doi: 10.1016/j.jhazmat.2009.09.105. 被引量:1

共引文献10

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部