摘要
使用聚丙烯酸接枝改性聚四氟乙烯(PAA-g-PTFE)纤维分别与Fe3+及其与Cu2+的混合物反应制备改性PTFE纤维铁和铁铜双金属配合物,并分别使用傅里变换叶红外(FTIR)光谱和紫外-可见(UV-Vis)漫反射光谱(DRS)对两种配合物的化学结构和光吸收性能进行表征.然后将两种配合物分别作为非均相光Fenton反应催化剂应用于典型偶氮染料活性蓝222氧化降解反应中,考察和比较了二者在不同pH介质中对降解反应的催化作用.结果表明,在有或无Cu2+的存在条件下,一个Fe3+能够与三个PAA-g-PTFE表面的6个羧基发生反应形成配合物,并且它们在紫外和可见光区表现出好的光吸收特性.当两种金属离子共存时Cu2+比Fe3+更容易与PAA-g-PTFE发生配位反应形成铁铜双金属配合物.在可见光辐射下PAA-g-PTFE铁配合物对不同pH水溶液中染料降解反应均表现出显著的催化作用,但是溶液pH的升高不利于配合物催化活性的发挥.而配合物中铁离子含量提高特别是引入Cu2+作为助金属离子能够较大幅度地改善其在高pH范围内的催化活性和重复利用性.
Polyacrylic acid grafted polytetrafluoroethylene (PAA-g-PTFE) fibers were coordinated with Fe3+ ions and with a mixture of Cu2+ and Fe3+ ions to prepare PAA-g-PTFE Fe and Cu-Fe bimetallic complexes. The chemical structures and light adsorption properties of the complexes were characterized using Fourier transform infrared (FTIR) spectrometry and UV-Vis diffuse reflection spectroscopy (DRS), respectively. The complexes were used as heterogeneous photo-Fenton catalysts in the oxidative degradation of the azo dye, Reactive Blue 222, in different pH aqueous media. The results indicate that Fe3+coordinates with six carboxyl groups grafted on the surface of PAA-g-PTFE in the presence or absence of Cu2+ ion, and improved light adsorption properties are achieved in the UV and visible regions. When both metal ions coexist in solution, the Cu2+ ion coordinates more easily with PAA-g-PTFE than Fe3+ to produce a PAA-g-PTFE Cu-Fe bimetallic complex. Moreover, PAA-g-PTFE Fe significantly increases the degradation of Reactive Blue 222 in the pH range 3-9 under visible irradiation. However, at high pH conditions (〉7) the catalytic ability is reduced. Increasing the Fe content, and especially incorporating Cu2+ ions in the complex, dramatically improves the catalytic reusability at high pH value.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2013年第1期157-166,共10页
Acta Physico-Chimica Sinica
基金
天津市应用基础与前沿技术重点研究计划(11JCZDJC24600)
国家自然科学基金(20773093)资助项目~~
关键词
聚四氟乙烯纤维
金属配合物
配位结构
光催化
FENTON反应
染料降解
Polytetrafluoroethylene fiber
Metallic complex
Coordination structure
Photocatalysis Fenton reaction
Dye degradation