期刊文献+

Ischemic Preconditioning Inhibits Over-expression of Arginyl-tRNA Synthetase Gene Rars in Ischemia-injured Neurons 被引量:2

Ischemic Preconditioning Inhibits Over-expression of Arginyl-tRNA Synthetase Gene Rars in Ischemia-injured Neurons
下载PDF
导出
摘要 The expression changes of Rars gene in ischemia-injured neurons were investigated by detecting its translational product arginyl-t RNA synthetase(Arg RS), and the inhibitory effects of ischemic preconditioning(IPC) on Rars gene were explored. Both IPC model and prolonged ischemia(PI) model were established by using the classic oxygen glucose deprivation(OGD) method. The primary cultured neurons were assigned into the following groups: the experimental group(IPC+PI group), undergoing PI after a short period of IPC; the conditional control group(PI control group), subjected to PI without IPC; blank control group, the normally cultured neurons. The Rars transcriptional activities and Arg RS expression levels were measured at different time points after re-oxygenation(3 h/6 h/12 h/24 h). Data were collected and statistically analyzed. Compared to the blank control group, the Rars activities and Arg RS levels were significantly increased in PI control group, peaking at the time point of 6 h after re-oxygenation. Rars activities and Arg RS levels were significantly lower in the experimental group than in the PI control group at different time points after re-oxygenation. PI insult can induce an escalating activity of Rars and lead to Arg RS over-expression in primary cultured neurons. IPC can inhibit the increased Rars activity and down-regulate Arg RS expression of ischemia-insulted neurons. This mechanism may confer ischemic tolerance on neurons. The expression changes of Rars gene in ischemia-injured neurons were investigated by detecting its translational product arginyl-t RNA synthetase(Arg RS), and the inhibitory effects of ischemic preconditioning(IPC) on Rars gene were explored. Both IPC model and prolonged ischemia(PI) model were established by using the classic oxygen glucose deprivation(OGD) method. The primary cultured neurons were assigned into the following groups: the experimental group(IPC+PI group), undergoing PI after a short period of IPC; the conditional control group(PI control group), subjected to PI without IPC; blank control group, the normally cultured neurons. The Rars transcriptional activities and Arg RS expression levels were measured at different time points after re-oxygenation(3 h/6 h/12 h/24 h). Data were collected and statistically analyzed. Compared to the blank control group, the Rars activities and Arg RS levels were significantly increased in PI control group, peaking at the time point of 6 h after re-oxygenation. Rars activities and Arg RS levels were significantly lower in the experimental group than in the PI control group at different time points after re-oxygenation. PI insult can induce an escalating activity of Rars and lead to Arg RS over-expression in primary cultured neurons. IPC can inhibit the increased Rars activity and down-regulate Arg RS expression of ischemia-insulted neurons. This mechanism may confer ischemic tolerance on neurons.
出处 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第4期554-557,共4页 华中科技大学学报(医学英德文版)
基金 supported by the National Natural Science Foundation of China(No.81371453)
关键词 ischemic preconditioning arginyl-tRNA synthetase Rars oxygen glucose deprivation ischemic preconditioning arginyl-tRNA synthetase Rars oxygen glucose deprivation
  • 相关文献

参考文献2

二级参考文献1

共引文献35

同被引文献10

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部