期刊文献+

基于HowNet的微博文本语义检索研究 被引量:12

Microblog Text Semantic Retrieval Based on HowNet
原文传递
导出
摘要 随着新浪等微博用户的不断增长,微博网站已经成为人们获取信息和创造信息的主要平台。现有微博平台的检索功能只能靠关键词匹配返回检索结果,使得检索结果无法满足用户需求。为了解决该问题,提出一种基于HowNet知识库系统的微博语义检索方法。利用HowNet知识库系统分别将中文待检索主题词和微博文本词汇进行语义相关度匹配,返回和待检索词汇语义相关度较高的微博文本,最后针对新浪微博数据集进行语义检索实验。实验结果表明,利用HowNet系统能够从语义层面上获得较高的查准率,为用户提供更满意的检索效果。 Microblog semantic retrieval has become the main platform for users to access and create information. Current retrieval in microblog mainly depends on the keyword matching rather than semantic analysis, which makes the results can' t satisfy user' s demand. To overcome this problem, we proposed a method for microblog semantic retrieval based on HowNet. Firstly, we used HowNet to conduct semantic relevance computation between query term and microblog terms on Chinese corpora. Then, the microblog texts containing terms with high degree of correlation were returned. Finally, we conducted experiments on Sina Microblog. The experimental results show that our method can obtain high accuracy on semantic level, and achieve better retrieval results.
出处 《情报科学》 CSSCI 北大核心 2016年第9期134-137,共4页 Information Science
基金 浙江省自然科学基金项目(LQ14F020008) 国家自然科学基金项目(61202282)
关键词 微博 HOWNET 语义检索 microblog HowNet wmenatic retrieval
  • 相关文献

参考文献5

二级参考文献74

  • 1滕云,杨琴.网络弱关系与个人社会资本获取[J].重庆社会科学,2007(2):122-124. 被引量:13
  • 2王永恒,贾焰,杨树强.海量短语信息文本聚类技术研究[J].计算机工程,2007,33(14):38-40. 被引量:13
  • 3周明,刘晓华,蒋龙,等.语义分析和搜索教程[R].北京:微软亚洲研究院,2010. 被引量:1
  • 4LIU Xiaohua, ZHOU Ming, LI Kuan. SRL for news tweets[ C ]// Proceedings of the 23rd International Con- ference on Computational Linguistics. Beijing: Tsinghua University Press, 2010. 被引量:1
  • 5曹国伟.新浪微博注册用户数已经突破1.4亿[EB/OL].(2011-05-13)[2011-06-09].http://news.ccidnet.com/art/3709/20110513/23890531.html. 被引量:1
  • 6Jameson Berkow. FP tech desk: twitter now fastest-growing search engine [ EB/OL] ( 2010-07-08 ) [2011-05-24]. http://business, financialpost, com/2010/07/07/fptech-desk-twitter-now-fastest-growing-search-engine/. 被引量:1
  • 7Kelly Ryan. Twitter study reveals interesting results about usage[R]. San Antonio, Texas: Pear Analytics, 2009. 被引量:1
  • 8Blei D, Ng A, Jordan M. Latent Dirichlet allocation [ J ]. Journal of Machine Learning Research ,2003 (3) .993 - 1022. 被引量:1
  • 9Hong Liangjie, Davison B. Empirical study of topic modeling in Twitter[ C ]// Proceedings of the First Workshop on Social Media Analytics ( SOMA' 10). New York . ACM Press,2010.80 - 88. 被引量:1
  • 10Decrwester S, Dumais S, Landauer T,et al. Indexing by latent se- mantic analysis[ J]. Journal of the American Society for Informa- tion Science, 1990,41 (6) .391 -407. 被引量:1

共引文献114

同被引文献122

引证文献12

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部