期刊文献+

面向真实世界的智能感知与交互 被引量:12

Towards real world perception and interaction
原文传递
导出
摘要 感知与交互既是智能机器重要且基本的能力和组成部分,也是智能机器从现实中学习和获得知识的重要甚至唯一手段.过去20年中感知与交互系统的研究往往是面向限定域的,并且在若干领域取得了显著的进步.随着服务机器人、无人驾驶车等的发展,感知与交互系统将不可避免地需要面对真实世界的挑战.本文简要地回顾了感知与交互领域的发展历程,提出了8个面向真实世界感知与交互的挑战.解决这些问题,有助于将现有智能机器应对外界的能力从特定领域的"专家"提升到在一般意义上"常人"级水平的感知与交互. Perception and interaction are the most important and essential parts of an intelligent machine. They are crucial and even unique channels by which to learn from the real world. In the past two decades, there has been significant progress in closed world research on perception and/or interaction. With the current rapid developments in the areas of service robots and unmanned vehicles, perception and interaction are confronted with challenges from the real world. This paper briefly reviews the history of computer perception and interaction,and lists eight problems in real world perception and interaction that, if solved, will elevate the perception and interaction capabilities of intelligent machines from a specialist- to human-level in the real world.
出处 《中国科学:信息科学》 CSCD 北大核心 2016年第8期969-981,共13页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61390510)资助项目
关键词 感知 交互 计算机视觉 机器人 perception interaction computer vision robot
  • 相关文献

参考文献45

  • 1Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529:484-489. 被引量:1
  • 2Roberts L. Machine perception of three-dimensional solids. In: Optical and Electron-optical Information Processing. Cambridge: MIT Press, 1965. 159-197. 被引量:1
  • 3Marr D. Vision: a Computational Investigation Into the Human Representation and Processing of Visual Information. Cambridge: MIT Press, 2010. 被引量:1
  • 4Jain R C, Binford T O. Ignorance, myopia, and naivete in computer vision systems. CVGIP: Image Und, 1991, 53: 112-117. 被引量:1
  • 5Brooks R A. Intelligence without reason. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, 1991. 569-595. 被引量:1
  • 6Zhang Z. Microsoft Kinect sensor and its effect. IEEE Multimed, 2012, 19:4-10. 被引量:1
  • 7Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images. Commun ACM, 2013, 56:116-124. 被引量:1
  • 8Fankhauser P, Bloesch M, Rodriguez D, et al. Kinect v2 for mobile robot navigation: evaluation and modeling. In: Proceedings of the 17th International Conference on Advanced Robotics, Istanbul, 2015. 388-394. 被引量:1
  • 9Han J, Shao L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cyber, 2013, 43:1318-1334. 被引量:1
  • 10Leibe B, Schiele B. Analyzing appearance and contour based methods for object categorization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003. 2:409-415. 被引量:1

同被引文献123

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部