期刊文献+

基于短文本隐含语义特征的文本蕴涵识别 被引量:3

Recognizing Textual Entailment Based on Short Text Latent Semantic Feature
下载PDF
导出
摘要 该文采用基于短文本隐含空间语义特征改进文本蕴涵识别,该方法通过构造句子的隐含变量模型,并融合基于该模型的句子之间相似度特征,和词汇重叠度、N元语法重叠度、余弦相似度等字符串特征,以及带标记和未标记的子树重叠度句法特征一起利用SVM进行分类。基于该分类算法,我们对RTE-8任务进行了测试,实验表明短文本的隐含语义特征可有效改进文本蕴涵关系识别。 This paper improves the identification of textual entailment based on short text latent semantic features. The method trains a reliable latent variable model on sentences,and gets the sentence similarity features. The short text latent semantic features, combined with other string features such as word overlap, N-gram overlap, cosine simi- larity, etc, and lexical semantic features such as unlabeled sub tree overlap,labeled sub tree overlap, are used to iden- tify textual entailment using SVM. We test on RTE-8 task,and the result shows that the latent semantic features are helpful to recognize textual entailment.
出处 《中文信息学报》 CSCD 北大核心 2016年第3期163-171,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金(61173062)
关键词 文本蕴涵 隐含语义特征 短文本 支持向量机 textual entailment latent semantic feature short text support vector machine
  • 相关文献

参考文献15

  • 1袁毓林,王明华.文本蕴涵的推理模型与识别模型[J].中文信息学报,2010,24(2):3-13. 被引量:17
  • 2Dagan I,Dolan B,Magnini B,et al. Recognizing textual entailment: Rational,evaluation and approaches-erratum[J]. Natural Language Engineering,2010,16(1): 105. 被引量:1
  • 3Zesch T,Levy O,Gurevych I,et al. UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis[J]. Atlanta,Georgia,USA,2013: 285. 被引量:1
  • 4Jimenez S,Becerra C,Gelbukh A,et al. SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis[J]. Atlanta,Georgia,USA,2013: 280. 被引量:1
  • 5刘茂福,李妍,姬东鸿.基于事件语义特征的中文文本蕴含识别[J].中文信息学报,2013,27(5):129-136. 被引量:11
  • 6Guo W,Diab M. Modeling sentences in the latent space[C] //Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics,2012: 864-872. 被引量:1
  • 7Guo W,Diab M. A simple unsupervised latent semantics based approach for sentence similarity[C] //Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task,and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation. Association for Computational Linguistics,2012: 586-590. 被引量:1
  • 8刘茂福,李妍,顾进广.基于统计与词汇语义特征的中文文本蕴涵识别[J].计算机工程与设计,2013,34(5):1777-1782. 被引量:4
  • 9张鹏,李国臣,李茹,刘海静,石向荣,Collin Baker.基于FrameNet框架关系的文本蕴含识别[J].中文信息学报,2012,26(2):46-50. 被引量:9
  • 10Ren H,Lv C,Ji D. The WHUTE System in NTCIR-9 RITE Task[C] //Proceedings of the 9th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval,Question Answering and Cross-Lingual Information Access.2011: 373-378. 被引量:1

二级参考文献92

  • 1陆俭明.新中国语言学50年[J].当代语言学,1999,1(4):1-13. 被引量:28
  • 2Akhmatova, Elena. Textual Entailment Resolution via Atomic Proposition[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005. 被引量:1
  • 3Andreevskaia, Alina, Zhuoyan Li and Sabine Berger. Can Shallow Predicate Argument Structure Determine Entailment? [C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005 :. 被引量:1
  • 4Bar-Haim, Roy, Idan Szpektor and Oren Gliekman. Definition and Analysis of Intermediate Entailment Levels[C]//Proceeding of the ACL Workshop on Em pirical Modeling of Semantic Equivalence and Entailment. 2005:55-60. 被引量:1
  • 5Barzilay, Regina and Kathleen McKeown (2001) Extracting Paraphrases from a Parallel Corpus[C]// ACL/EACL. 2001 : 50-57. 被引量:1
  • 6Barzilay, Regina and Lillian Lee. Learning to Paraphrase: An Unsupervised Approach Using Multiple- Sequence Alignment[C]//Proceeding of the NAACLHLT. 2003: 16-23. 被引量:1
  • 7Bos, Johan and Katja Markert. Combining Shallow and Deep NLP Methods for Recognizing Textual En tailment[C]//Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment. 2005. 被引量:1
  • 8Dagan, Ido and Oren Glickman. Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability[C]//PASAL workshop on Learning Meth ods for Text Understanding and Mining, Grenoble France. 2004. 被引量:1
  • 9Dagan, Ido, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein, Carlo Strapparava. Direct Word Sense Matching for Lexical Substitution[C]//COLING-ACL 06. 2006. 被引量:1
  • 10Dagan, Ido, Oren Glickman and Bernado Magnini. The PASCAL Recognising Textual Entailment Challenge[J]. Lecture Notes in Computer Science, 2006,3944:177-190. 被引量:1

共引文献41

同被引文献8

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部