期刊文献+

基于知识话题模型的文本蕴涵识别 被引量:4

Recognizing Textual Entailment Based on Knowledge Topic Models
下载PDF
导出
摘要 该文分析了现有基于分类策略的文本蕴涵识别方法的问题,并提出了一种基于知识话题模型的文本蕴涵分类识别方法。其假设是:文本可看作是语义关系的组合,这些语义关系构成若干话题;若即若文本T蕴涵假设H,说明T和H具有相似的话题分布,反之说明T和H不具有相似的话题分布。基于此,我们将T和H的蕴涵识别问题转化为相关话题的生成过程,同时将文本推理知识融入到抽样过程,由此建立一个面向文本蕴涵识别的话题模型。实验结果表明基于知识话题模型在一定程度上改进了文本蕴涵识别系统的性能。 This paper analyzes the defects in current entailment recognition approaches based on classification strate gy and proposes a novel approach to recognizing textual entailment based on a knowledge topic model. The assumption in this approach is, if two texts have an entailment relation, they should share a same or similar topic distribu tion. The approach builds an LDA model to estimate semantic similarities between each text and hypothesis, which provides the evidences for judging entailment relation. We also employ three knowledge bases to improve the precision of Gibbs sampling. Experiments show that knowledge topic model improves the performance of textual entailment recognition systems.
出处 《中文信息学报》 CSCD 北大核心 2015年第6期119-126,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(61402341 61173062 61373108) 国家社会科学基金重大项目(11&ZD189) 中国博士后科学基金(2013M540594)
关键词 文本蕴涵识别 话题模型 蕴涵分类 推理知识 recognizing textual entailment topic models entailment classification inference knowledge
  • 相关文献

参考文献20

  • 1Dagan I, Glickman O, Magnini B. The PASCAL recognising textual entailment challenge[C]//Proceed2 ings of the Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. Springer Berlin Heidelberg, 2006:177-190. 被引量:1
  • 2Androutsopoulos I, Malakasiotis P. A Survey of Para- phrasing and Textul Entailment Methods[J]. Journal of Artificial Intelligence Research, 2010, 38(1): 135- 187. 被引量:1
  • 3Dagan I, Dolan B. Recognizing textual entailment: Rational, evaluation and approaches[J]. Natural Lan-guage Engineering, 2009, 15(4): i-xvii. 被引量:1
  • 4O Dzikovska M, D Nielsen R, Brew C, et al. SemE- val-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge [C]//Proeeedings of Second Joint Conferenee on Lexi- cal and Computational Semantics. 2013: 263-274. 被引量:1
  • 5张鹏,李国臣,李茹,刘海静,石向荣,Collin Baker.基于FrameNet框架关系的文本蕴含识别[J].中文信息学报,2012,26(2):46-50. 被引量:9
  • 6De Marneffe M C, Rafferty A N, Manning C D. Find- ing Contradictions in Text[C]//Proceedings of the ACL. 2008, 8: 1039-1047. 被引量:1
  • 7Malakasiotis P, Androutsopoulos I. Learning textual entailment using SVMs and string similarity measures[C]//Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing. Association for Computational Linguistics, 2007: 42-47. 被引量:1
  • 8刘茂福,李妍,姬东鸿.基于事件语义特征的中文文本蕴含识别[J].中文信息学报,2013,27(5):129-136. 被引量:11
  • 9石晶,戴国忠.基于知网的文本推理[J].中文信息学报,2006,20(1):76-84. 被引量:8
  • 10Kouylekov M, Magnini B. Recognizing textual entail- ment with tree edit distance algorithms[C]//Proceed- ings of the First Challenge Workshop Recognising Textual Entailment. 2005:17-20. 被引量:1

二级参考文献40

  • 1Peter Clark,Phil Harrison.An Inference-Based Approach to Recognizing Entailment[C]//Proceedings of Text Analysis Conference (TAC).2009. 被引量:1
  • 2Debarghya Majumdar,Pushpak Bhattacharyya.Lexical Based Text Entailment System for Main Task of RTE6[C]//Proceedings of Text Analysis Conference (TAC).2010. 被引量:1
  • 3Alexander Volokh,G nter Neumann,Bogdan Sacaleanu.Combining Deterministic Dependency Parsing and Linear Classification for Robust RTE[C]//Proceedings of Text Analysis Conference (TAC).2010. 被引量:1
  • 4C.J.Fillmore.Frame semantics and the nature of language[J].Annals of the New York Academy of Sciences,1976:20-32. 被引量:1
  • 5J.Scheffczyk,C.F.Baker,S.Narayanan.Ontologybased reasoning about lexical resources[C]//Proceedings of the Workshop on Interfacing Ontologies and Lexical Resources for Semantic Web Technologies (OntoLex 2006).2006. 被引量:1
  • 6Ekaterian Ovchinnikova,Laure Vieu,Alessandro Oltranari. Data-Driven and Ontological Analysis of FrameNet for Natural Language Reasoning[C]//Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10).2010. 被引量:1
  • 7Aljoscha Burchardt,Anette Frank.Approaching Textual Entailment with LFG and FrameNet Frames[C]//Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.2006. 被引量:1
  • 8Himanshu Shivhare,Parul,Anusha Jain.Semi Congitive approach to RTE 6-Using FrameNet for Semantic Clustering[C]//Proceedings of Text Analysis Conference (TAC).2010. 被引量:1
  • 9Collin Baker.FrameNet[DB/OL].2011-5-6.http://framenet.icsi.berkeley.edu. 被引量:1
  • 10R. Schank. Language and Memory Principles. Readings in Natural Language Processing[M]. B. Grosz and K. Spark-Jones, eds. Morgan Kaufmann. 1986. 171- 192. 被引量:1

共引文献19

同被引文献16

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部