摘要
采用一般质点近似和再生核质点近似表示系统响应量,给出了动力系统响应量的一般表达式。在此基础上,发展了一类求解广义概率密度演化方程的再生核质点加密算法,给出了详细求解步骤。以单自由度系统为例,从响应概率密度的角度考察了再生核质点加密算法的精度。以多自由度框架结构为例,验证了再生核质点加密算法求取非线性随机动力系统响应概率密度的正确性。
The response of dynamic systems can be approximated by the particle approximation or the reproducing kernel particle method. The refined algorithm of generalized density evolution equation is developed based on the reproducing kernel particle method. The steps of the refind algorithm are detailed in the paper. Through the system of a single degree of freedom as an example,the accuracy of the refined algorithm is investigated based on the PDFs of the response. Then through a stochastic sturcture of multi degrees of freedom as an example, the refined algorithm based on the reproducing kernel particle method can slove the nonlinear stochastic system.
出处
《计算力学学报》
CAS
CSCD
北大核心
2016年第4期543-548,587,共7页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金重点(51538010)资助项目
关键词
随机动力系统
概率密度
再生核质点法
加密算法
stochastic dynamics system
probability density
reproducing kernel particle method
refined algorithm