期刊文献+

广义概率密度演化方程的再生核质点加密算法 被引量:1

The refined algorithm of generalized density evolution equation based on reproducing kernel particle method
下载PDF
导出
摘要 采用一般质点近似和再生核质点近似表示系统响应量,给出了动力系统响应量的一般表达式。在此基础上,发展了一类求解广义概率密度演化方程的再生核质点加密算法,给出了详细求解步骤。以单自由度系统为例,从响应概率密度的角度考察了再生核质点加密算法的精度。以多自由度框架结构为例,验证了再生核质点加密算法求取非线性随机动力系统响应概率密度的正确性。 The response of dynamic systems can be approximated by the particle approximation or the reproducing kernel particle method. The refined algorithm of generalized density evolution equation is developed based on the reproducing kernel particle method. The steps of the refind algorithm are detailed in the paper. Through the system of a single degree of freedom as an example,the accuracy of the refined algorithm is investigated based on the PDFs of the response. Then through a stochastic sturcture of multi degrees of freedom as an example, the refined algorithm based on the reproducing kernel particle method can slove the nonlinear stochastic system.
作者 李杰 孙伟玲
出处 《计算力学学报》 CAS CSCD 北大核心 2016年第4期543-548,587,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金重点(51538010)资助项目
关键词 随机动力系统 概率密度 再生核质点法 加密算法 stochastic dynamics system probability density reproducing kernel particle method refined algorithm
  • 相关文献

参考文献18

  • 1朱位秋著..随机振动[M].北京:科学出版社,1992:564.
  • 2李杰著..随机结构系统 分析与建模[M].北京:科学出版社,1996:297.
  • 3Li J, Chen J Probability density evolution method for dynamic response analysis of stochastic structures [A]. Proceeding of the Fifth International Conference on Stochastic Structural Dynamics [ C]. Hangzhou, 2003. 被引量:1
  • 4Li J, Chen J 3. Stochastic Dynamics of Structures [M]. John Wiley Sons,2009. 被引量:1
  • 5Li J,Chen J B. The principle of preservation of proba- bility and the generalized density evolution equation [J]. Structural Safety, 2008,30 (1) : 65-77. 被引量:1
  • 6Li J, Chen J B. The probability density evolution method for dynamic response analysis of non-linear stochastic structures [J]. International Journal for Numerical Methods in Engineering, 2006, 65 (6) : 882-903. 被引量:1
  • 7Li J, Chen J B, Fan W L. The equivalent extreme- value event and evaluation of the structural systemreliability[J]. Structural Safety, 2007, 29(2) : 112-131. 被引量:1
  • 8Li J, Peng Y B, Chen J B. A physical approach to structural stochastic optimal controls[J]. Probabilis- tic Engineering Mechanics, 2010,25(1) : 127-141. 被引量:1
  • 9LiJ, Xu J. Dynamic stability and failure probability analysis of dome structures under stochastic seismic excitation[J]. International Journal of Structural Stability and Dynamics ,2014,14(5) : 1440001. 被引量:1
  • 10Li J, Chen J B. Probability density evolution method for dynamic response analysis of structures with un- certain parameters [J]. Computational Mechanics, 2004,34(5) :400-409. 被引量:1

二级参考文献69

共引文献84

同被引文献4

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部