期刊文献+

随机结构响应密度演化分析的映射降维法 被引量:6

THE MAPPING-BASED DIMENSION-REDUCTION ALGORITHM FOR PROBABILITY DENSITY EVOLUTION ANALYSIS OF STOCHASTIC STRUCTURAL RESPONSES
下载PDF
导出
摘要 提出了随机结构响应密度演化分析的映射降维算法.在一般线性与非线性随机结构分析中,采用近年发展起来的密度演化方法,能够获得动力响应的瞬时概率密度函数及其演化过程,具有较好的精度.当具有多个随机变量时,采用常规的格栅型选点将导致过大的计算工作量.基于Cantor集合映射的基本思想,将多维空间中的离散网格点逐次两两降维,按照概率测度值进行排序、取点,从而将具有多个随机变量的随机结构分析问题的计算工作量降到与仅含单一随机变量的随机结构分析相当的水平.与随机模拟结果的比较表明:建议的方法具有较高的精度和效率. A mapping-based dimension-reduction algorithm for probability density evolution analysis of stochastic structural responses is proposed. In recent years, an original probability density evolution method, which is capable of evaluating the instantaneous probability density functions of stochastic responses of general multi-degree-of-freedom nonlinear structures, has been developed. In the case of only one or two random parameters involved, a grid-type representative point set is feasible and of fair efficiency. When multiple ranom parameters are involved, however, the grid-type point sets will make the number of the chosen discretized representative points increase almost exponentially against the number of the random parameters, leading to prohibitively large computational efforts. In the present paper, starting with the idea of Cantor set mapping, a dimension-reduction algorithm is developed. In the proposed approach, the strategy of picking out points from the grid-type point set for the case of two random parameters is firstly discussed in detail. In this case, the grid-type points are sorted according to the associated such that the sum of the probability in each subset is probability and divided into a certain number of subsets almost at the same level but usually not identical. One single point is then picked out, say, deterministically or randomly, in each subset with the associated probability equaling to the sum of the probability in this subset. All the above chosen points form the finally used discretized representative point set. In the case of multiple random parameters, the above procedure is iteratively employed and finally the number of the picked out points is almost at the same level as that needed in the case of only one single random parameter. Consequently, the computational efforts in the problem involving multiple random parameters could be reduced to the level of the problem involving one single random parameter. The comparison with the Monte Carlo simulation demonstrates that the proposed
作者 李杰 陈建兵
出处 《力学学报》 EI CSCD 北大核心 2005年第4期460-466,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家创新研究群体科学基金(50321803)国家自然科学基金(10402030)资助项目.~~
关键词 随机结构 动力响应 密度演化方法 Cantor集合论 映射降维算法 stochastic structures, dynamic response, probability density evolution method, Cantor's set theory, mapping-based dimension-reduction algorithm
  • 相关文献

参考文献12

  • 1李杰著..随机结构系统 分析与建模[M].北京:科学出版社,1996:297.
  • 2严加安.测度论讲义[M].北京:科学出版社,2000.40-49. 被引量:4
  • 3胡适耕编著..实变函数[M].北京:高等教育出版社;施普林格出版社,1999:211.
  • 4Schueller GI, ed. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 1997, 12(4): 198~321. 被引量:1
  • 5Rollot O, Elishakoff I. Large variation finite element method for beams with stochastic stiffness. Chaos, Solitons and Fractals, 2003, 17:749~779. 被引量:1
  • 6Impollonia N, Sofi A. A response surface approach for the static analysis of stochastic structures with geometrical nonlinearities. Computer Methods in Applied Mechanics and Engineering, 2003, 192:4109~4129. 被引量:1
  • 7李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-442. 被引量:51
  • 8李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 9伽莫夫著 暴永宁译 吴伯泽校.从一到无穷大(修订版)[M].北京:科学出版社,2003.. 被引量:1
  • 10Clough RW, Penzien J. Dynamics of Structures. 2nd edn.New York: McGraw-Hill, 1993. 被引量:1

二级参考文献30

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981.. 被引量:1
  • 3Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451. 被引量:1
  • 4Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992. 被引量:1
  • 5Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408. 被引量:1
  • 6Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202. 被引量:1
  • 7Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025. 被引量:1
  • 8Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565. 被引量:1
  • 9Ren Y J, Elishakoff I, Shinozulm M. Finite element method for stochastic beams based on variational principles. Journal of Applied Mechanics, 1997, 64:664-669. 被引量:1
  • 10Elishakoff I, Impollonia N, Ren YJ. New exact solutions for randomly loaded beams with stochastic flexibility. International Journal of Solids and Structures, 1999, 36,2325-2340. 被引量:1

共引文献103

同被引文献75

引证文献6

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部