期刊文献+

基于加权稀疏子空间聚类多特征融合图像分割 被引量:7

Multi-feature fusion image segmentation based on weighted-sparse subspace clustering
下载PDF
导出
摘要 提出一种图像分割的多特征融合加权稀疏子空间聚类方法。采用多种属性的特征能够更可靠地描述图像中不同物体的特性,提高分割的准确性和可靠性。定义了加权稀疏度量,即在1-范数中引入权重,权重与数据的相似度成反比,有利于迫使相似的数据尽可能参与到数据的自表示中,从而改善稀疏表示过稀疏并且不稳定的局限性。实验结果和客观指标表明,所提方法能有效地分割自然图像,获得的结果更加符合人类视觉感知。 A weighted-sparse subspace clustering method with multi-feature fusion is proposed for imagesegmentation. Integration of multiple features can reliably describe the characteristics of various objects in naturalimages, thus can improve the accuracy and reliability of segmentation. The weighted-sparse measure is definedby introducing weights in the 1-norm of vectors. The weight is inversely proportional to the similarity betweendata? therefore the weighted 1-norm penalty on the linear representation coefficients tends to force similardata be involved while dissimilar data uninvolved in the linear representation of a datum. The resulted representationcan overcome the drawbacks of 1-norm penalty that the presentation coefficients are usually over sparseand not robust for highly correlated data. Experimental results and objective assessment indexes show that theproposed method can effectively segment natural images with good visual consistency.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期2184-2191,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61472303 61271294) 中央高校基本科研业务费(NSIY21)资助课题
关键词 图像分割 多特征融合 子空间聚类 加权稀疏 image segmentation multi-feature fusion subspace clustering weighted-sparse
  • 相关文献

参考文献2

二级参考文献115

  • 1Lee J S, Kuo Y M,Chung P C, et al. Naked image detectionbased on adaptive and extensible skin color mode [J]. PatternRecognition, 2007. 40(8) : 2261 - 2270. 被引量:1
  • 2Archibald R. Polynomial fitting for edge detection in irregularlysampled signals and images [J]. SIAM Journal on NumericalAnalysis. 2005,43(1):259 -279. 被引量:1
  • 3Chan T F, Vese L A. Active contours without edges [J]. IEEETrans, on Image Processing . 2001,10(2): 266 - 277. 被引量:1
  • 4Han Y. Feng X C,Baciu G. Variational and PCA based natural images^mentation [J], Pattern Recognition f 2013, 46(1) .1971 - 1984. 被引量:1
  • 5Han Y, Wang W W, Feng X C. A new fast multiphase imagesegmentation algorithm based on nonconvex regularizer [J].Pattern Recognition . 2012, 45(1) j 363 - 372. 被引量:1
  • 6Xiang T, Gong S. Spectral clustering with eigen vector selec-tion [J]. Pattern Recognition . 2008,41(3) : 1012 - 10^9. 被引量:1
  • 7Thilagamani S. A survey on image segmentation through clus-tering [J]. International Journal of Research and Reviews inInformation Sciences , 2011,1(1) : 14 - 17. 被引量:1
  • 8Elhamifar E, Vidal R. Sparse subspace clustering [C]//Proc.of the IEEE Con ference on Computer Vision and Pattern Rec-ognition ,2009:2790 - 2797. 被引量:1
  • 9Elhamifar E, Vidal R. Clustering disjoint subspaces via sparserepresentation [C] [/ Proc. of the IEEE International Conferenceon Acoustics. Speecht and Signal Processing > 2011:1926 - 1929. 被引量:1
  • 10Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation [C] // Proc. of the International Confer-ence on Machine Learning . 2010:663 - 670. 被引量:1

共引文献87

同被引文献37

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部