期刊文献+

聚氨酯基凝胶聚合物电解质的制备与性能研究

Preparation and Properties of Gel Polymer Electrolytes Based on Thermoplastic Polyurethane
下载PDF
导出
摘要 通过倒相法制备固液比分别为25%、20%、17%的热塑性聚氨酯(TPU)基聚合物胶膜(GPE1、GPE2、GPE3),将其在电解液中浸泡0.5 h得到活化后的聚合物电解质,并采用微观形貌分析、力学和电化学等测试方法对其理化性能进行了表征。吸液率测试结果显示,GPE2的吸液率可达到331%,高于GPE1(318%)和GPE3(300%);SEM显示,聚合物胶膜的表面和内部都存在着均匀且密集分布的微孔结构;力学性能结果显示,未浸泡电解液的GPE1、GPE2和GPE3拉伸强度分别为5.45 MPa、3.09 MPa、4.24 MPa,吸液后对应胶膜拉伸强度分别为2.20 MPa、1.43 MPa和1.15 MPa;交流阻抗谱(EIS)和循环伏安电流法(LSV)测试结果表明,GPE2离子电导率和电化学稳定窗口分别为8.67×10^(-3)S/cm和5.62 V,均优于GPE1和GPE2。 Polymer membranes (GPE1, GPE2, GPE3 ) with different solid/liquid ratios (25%, 20%, 17% ) based on thermoplastic polyurethane were made through phase inversion method, and they were soaked in electrolyte for 0. 5 h to obtain activated polymer electrolyte, of which physical and chemical properties were characterized by scanning electron microscopy, mechanical and electrochemical tests. Absorbency test results show that GPE2 has the best absorption rate of 331% better than GPE2 (318% ) and GPE3 (300%). Scanning electron microscopy (SEM) results show that there are homogeneous and dense microspores in the surface and interior of polymer electrolyte membrane. Mechanical properties results show that GPE1, GPE2 and GPE3 before soaking the electrolyte have tensile strength of 5.45, 3.09 and 4. 24 MPa respectively, while after soaking in the electrolyte, their tensile strengths are 2. 20, 1.43 and 1.15 MPa, respectively. The ionic conductivity of GPE2 is 8.67×10^-3 S/cm and electrochemical stability of window is 5.62 V by electrochemical impedance spectroscopy (EIS) and linear scanning vohammetry (LSV).
出处 《塑料工业》 CAS CSCD 北大核心 2016年第8期133-137,共5页 China Plastics Industry
关键词 热塑性聚氨酯 多孔结构 电化学稳定窗口 离子电导率 倒相法 Thermoplastic Polyurethane Porous Structure Electrochemical Stability of Windows Ionic Conductivity Phase Inversion Method
  • 相关文献

参考文献13

  • 1黄乐之,温兆银,靳俊,刘宇.锂离子电池PEO-LATP/LAGP陶瓷复合电解质膜的制备与性能表征[J].无机材料学报,2012,27(3):249-252. 被引量:14
  • 2THACKERAY M M, WOLVERTON C, ISAACS E D. E- lectrical energy storage for transportation--approaching the limits of, and going beyond, lithium-ion batteries [ J ]. En- ergy Environ Sci, 2012, 5 (7) : 7854-7863. 被引量:1
  • 3唐致远,王占良,薛建军.塑料锂离子电池用聚合物电解质性能表征[J].高分子材料科学与工程,2002,18(2):33-36. 被引量:9
  • 4GRAY F M. Polymer electrolytes [ M ]. Great Britain: Royal Society of Chemistry, 1997. 被引量:1
  • 5MAGISTRIS A, MUSTARELLI P, QUARTARONE E, et al. Poly(vinylidenefluoride) -based porous polymer electro- lytes [ J ]. Electrochim Acta, 2001, 46 (10) : 1635 -1639. 被引量:1
  • 6LIU Y, LEE J Y, HONG L. In situ preparation of poly(eth- ylene oxide) -SiO2 composite polymer electrolytes [ J ]. JPower Sources, 2004, 129 (2): 303-311. 被引量:1
  • 7ELIANA Q, PIERCARLO M. Electrolytes for solid-state lith- ium rechargeable batteries: recent advances and perspectives [J]. ChemSoc Rev, 2011, 40 (5): 2525-2040. 被引量:1
  • 8FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkaline metalions with poly ( ethylene oxide) [ J ]. Poly- mer, 1973, 14 (11): 589-594. 被引量:1
  • 9关红艳,连芳,仇卫华,孙加林.锂离子电池用凝胶聚合物电解质研究进展[J].高分子材料科学与工程,2012,28(11):178-181. 被引量:12
  • 10HEUMEN J D V, STEVENS J R. The role of lithium salts in the conductivity and phase morphology of a thermoplastic polyurethane [ J ]. Macromolecules, 1995, 28 ( 12 ) : 4268 -4277. 被引量:1

二级参考文献48

  • 1黄再波,高德淑,李朝晖,雷钢铁,周姬.高压静电纺丝法制备P(VDF-HFP)聚合物电解质[J].化学学报,2007,65(11):1007-1011. 被引量:10
  • 2李朝晖,张汉平,张鹏,吴宇平.偏氟乙烯-六氟丙烯共聚物基微孔-凝胶聚合物电解质的研究进展[J].高分子通报,2007(7):8-16. 被引量:7
  • 3Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587-603. 被引量:1
  • 4Scrosafi B, Garche J. Lithium batteries: status, prospects and future J. Power Sources, 2010, 195(9): 2419-2430. 被引量:1
  • 5Anantharamulu N, Koteswara Rao K, Rambabu G, et al. A wide-range review of nasicon type materials. Z Mater. Sci., 2011, 46(9): 2821-2837. 被引量:1
  • 6Xu X, Wen Z, Gu Z, et al. Lithium ion conductive glass-ceramics in the system Lil.4ml0.4(Ge1-xTix)l.6(PO4)3 (x=-O-1.0). Solid State lonics, 2004, 171(3/4): 207-213. 被引量:1
  • 7Xu X, Wen Z, Gu Z, et aL Preparation of nanostructured Lil.4A10.4Ti1.6(PO4)3 glass-ceramics by a citrate process. Chem. Lett., 2005, 34(4): 512-513. 被引量:1
  • 8Xu X, Wen Z, Yang X, et al. High lithium ion conductivity glass-ceramics in Li20-A12Oa-TiO2-P205 from nanoscaled glassy powders by mechanical milling. Solid State lonics, 2006, 177(26-32): 2611-2615. 被引量:1
  • 9Xu X, Wen Z, Wu J, et al. Preparation and electrical properties of Lil.4A10.4Til.6(PO4)3 glass-ceramics by the citric acid-assisted Sol-Gel method. Solid State lonics, 2007, 178(1/2): 29-34. 被引量:1
  • 10Choi B. Optical microscopy study on the crystallization in PEO-salt polymer electrolytes. Solid State lonics, 2004, 168(1/2): 123-129. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部