期刊文献+

新型机翼后缘变弯运动机构仿真及其气动影响研究 被引量:12

Mechanical Simulation and Aerodynamic Analysis on a New Type of Wing Trailing Edge Variable Camber
下载PDF
导出
摘要 采用计算流体力学方法和CATIA DMU Kinematics机构仿真,对一套可用于目前及未来民用客机机翼后缘变弯的增升装置系统进行研究,主要包括襟翼运动机构和扰流板下偏。通过运动学分析,采用的襟翼机构可保证巡航阶段后缘变弯过程中机构上下表面无缝,同时满足起降过程对襟翼的运动轨迹的要求。相比简单铰链机构,应用该机构的起飞构型线性段升力系数增加0.05,升阻比的增加量在0.2%~3%范围内;着陆阶段扰流板下偏,较未偏转扰流板的最大升力系数增加1.14%,且线性段上移0.15,显示了该机构具有较高的增升效率。在二维翼型上应用该机构实现后缘变弯度,升阻比有较大提升,且根据来流马赫数的不同改变后缘弯度可以有效地提高阻力发散马赫数。在某远程宽体客机翼身组合体构型上应用该机构实现巡航阶段后缘变弯度,巡航升阻比的增加量在0.345%~2.28%范围内。综上所述,在不增加机构复杂性和重量的前提下,研究的新型机翼后缘变弯运动机构能够有效地提高气动效率。 By using computational fluid dynamics and CATIA DMU Kinematics, a high-lift system that could be used on the present and future civil aircraft for varying wing camber during cruise has been studied. It consists of flap mechanism and drooping spoiler. Kinematic analysis of the flap mechanism shows that there won't be any gap on the wing surface during cruise. Besides, the track of flap meets the requirements of takeoff and landing. Com-pared with the simple hinged flap, the linear range of lift coefficient of takeoff configurations that applied the flap mechanism increases by 0.05, and the corresponding increase of lift to drag ratio is from 3% to 0.2%. The maxi-mum lift coefficient of landing configuration with drooping spoiler increases by 1.14% and the linear range of lift co-efficient increases to 0.15 than the configuration without spoiler droop, which demonstrates its high efficiency. The flap mechanism has been used to change trailing edge camber on the basis of 2D cruise foils and the lift to drag ratio has been improved. The drag-divergence Mach number increases with trailing edge deflection angle. The flap mech-anism has also been used to change trailing edge camber of a long-range, wide-body transport aircraft. In the entire range of lift coefficient available during cruise, the L/D of initial configuration has increased by 0.345%~2.28%. In conclusion, the high-lift system used for varying camber during cruise shows great benefits on aerodynamics with-out increasing complexity and weight of mechanism.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第4期578-586,共9页 Journal of Northwestern Polytechnical University
关键词 增升装置 空气动力学 机构 后缘变弯度 计算流体力学 气动构型 升阻比 马赫数 high-lift system aerodynamics mechanisms trailing edge variable camber computational fluid dy-namics aerodynamic configurations lift to drag ratio Mach number
  • 相关文献

参考文献2

二级参考文献17

  • 1Stanewsky E. Aerodynamic benefits of adaptive wing technology[J]. Aerospace Science Technology, 2000, 4 (7) : 439 -452. 被引量:1
  • 2Stanewsky E. Adaptive wing and flow control technology [J]. Progress in Aerospace Sciences, 2001, 37(7):583- 667. 被引量:1
  • 3Spillman J J. The use of variable camber to reduce drag, weight and costs of transport aircraft[J]. Aeronautical Journal, 1982(1):1-9. 被引量:1
  • 4Gilbert W W. Mission adaptive wing system for tactical aircraft[J].Journal of Aircraft, 1981,18(7) : 597-602. 被引量:1
  • 5Martins A L, Catalano F M. Drag optimization for transport aircraft mission adaptive wing[R]. AIAA-2000-648, 2000. 被引量:1
  • 6Martins A L. Aerodynamic optimization study of a mission adaptive wing for transport aircraft[R]. AIAA-1997 2272, 1997. 被引量:1
  • 7Powers S G, Webb L D, Friend E L, et al. Flight test results from a supereritical mission adaptive wing with smooth variable camber[R]. NASA TM-4415, 1992. 被引量:1
  • 8Kudva J N, Appa K, van Way C B, et al. Adaptive smart wing design for military aircraft requirements, concepts, and payoffs[C]//Proceedings of SPIE. 1995, 2447: 35- 44. 被引量:1
  • 9Gern F H, Inman D J, Kapania R K. Computation of actuation power requirements for smart wings with motphing airfoils[J]. AIAA Journal, 2005,43 (12) : 2481 -2486. 被引量:1
  • 10Florance J P, Burner A W, Fleming G A, et al. Contributions of the NASA Langley Research Center to the DAR PA AFRL NASA Northrop Grumman Smart Wing program[R]. AIAA-2003-1961, 2003. 被引量:1

共引文献31

同被引文献70

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部