期刊文献+

EMD-SVD及粒子群优化的SVM变压器局部放电模式识别 被引量:3

The Pattern Recognition of Partial Discharge Based on EMD-SVD and PSO Optimizing Parameters of SVM
下载PDF
导出
摘要 为了对变压器的局部放电信号进行特征量提取以及模式识别,在分析EMD和SVD理论的基础上,提出了EMD-SVD和PSO-SVM相结合的方法。将选取的四种去噪后的局部放电信号(空气中电晕、沿面、气隙,油中气隙)经EMD分解为由高到低的固有模态函数,再利用SVD对其进行数据压缩,提取出14个反应PD信号本质的特征量,并将其输入到经粒子群优化的支持向量机进行模式识别。仿真结果表明,此方法能够较好地识别出四种局部放电信号,与未经优化的SVM、GA-SVM、GRID-SVM相比,经粒子群优化的支持向量机分类准确率较高、速度较快。 In order to extract and distinguish the pattern for the partial discharge signals of transformer, after analyzing thoretical of EMD and SVD, the method of combining between EMD-SVD and PSO-SVM is proposed. The four selected denoising partial discharge signals( corona,surface,cavity in air, cavity in oil)decomposes into intrinsic mode functions from high to low through EMD, using its SVD realizes data compression, thereby extracting the feature quantity of fourteen reactive nature of the PD signal. At the same time,pattern discrimination by entering into the PSO optimizing parameters of SVM. The result show that, this method can identify the four kinds of partial discharge signals preferably, and compared with non-optimized SVM, GA-SVM, GRID-SVM, it has higher classification accuracy rate and faster by PSO optimizing parameters of SVM.
出处 《电气开关》 2016年第4期16-21,共6页 Electric Switchgear
关键词 EMD SVD PD 粒子群 EMD SVD PD PSO
  • 相关文献

参考文献16

  • 1朱永利,尹金良.组合核相关向量机在电力变压器故障诊断中的应用研究[J].中国电机工程学报,2013,33(22):68-74. 被引量:82
  • 2胡文堂,高胜友,余绍峰,谈克雄,高文胜.统计参数在变压器局部放电模式识别中的应用[J].高电压技术,2009,35(2):277-281. 被引量:52
  • 3R Candela,G Mirelli,R Schifani. PD recognition by means of statisti- cal and fractal parameters and aneural network[ J]. IEEE Transations on Die- lectrics and Electrical Insulation ,2000,7 ( 1 ) : 87 - 94. 被引量:1
  • 4Gao Kai, Tan Ke-xiong, Li Fu-qi, Wu Cheng-qi. The Use of Moment Features of Partial Discharges in Generator Stator Winding Models [ C ]. Pro-ceedings of the 6th International Conference on Properties and Applications of Dielectric Materials ,2000:290 - 293. 被引量:1
  • 5吴子敬,郑殿春,张正晗,张宪忠.基于图像灰度矩特征的气体电晕放电WFCM辨识方法[J].哈尔滨理工大学学报,2010,15(2):14-18. 被引量:2
  • 6L. Hao and P. L. Lewin. partial discharge source discrimination using a support vector machine [ J ]. IEEE Transationson Dielectrics and Electrical Insulatian,2010,17( 1 ) :189 - 197. 被引量:1
  • 7王重云..基于神经网络的变压器故障诊断技术研究[D].东北石油大学,2013:
  • 8何洪军..变压器故障诊断识别理论与方法的研究[D].上海交通大学,2011:
  • 9肖燕彩..支持向量机在变压器状态评估中的应用研究[D].北京交通大学,2008:
  • 10N.E. Huang, Shen Z, S. R. Long, etal. The empirical moded ecompo- sition and the Hilbert spectrum for nonlinear and non-stationary time series a- nalysis [ J ]. PrecRsoLond, 1988,454:56 - 78. 被引量:1

二级参考文献65

共引文献162

同被引文献33

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部