期刊文献+

基于小波与分形理论的电力设备局部放电类型识别 被引量:37

Partial Discharge Classification based on Wavelet and Fractal Theory
下载PDF
导出
摘要 根据小波理论建立了表征局部放电脉冲信号的三维时频谱图,该三维谱图综合反映了局放脉冲信号的3个基本特征:时间分量、频率分量和放电能量的分布。采用了分形理论从所建立的三维时频谱图中提取放电特征,并构成识别特征量,采用误差反传神经网络对局部放电信号的类型进行模式识别。试验结果表明,该方法可有效区分局部放电的类型。 On the basis of wavelet analysis a threedimensional time-frequency pattern to characterize partial discharge (PD) impulse signal is upbuilt which comprehensively shows three basic features of PD impulse signals: time component, frequency component and distribution of discharging energy. From the upbuilt three-dimensional pattern the discharge features are extracted with fractal theory, thus PD fractal dimensions are used as feature vectors. The pattern recognition of the type of PD signal is conducted by means of BP neural network. The discharge experiments have been conducted to validate the proposed method with five types artificial discharge models, and experiment results show that the proposed method can effectively distinguish the type of PD.
出处 《电网技术》 EI CSCD 北大核心 2006年第13期76-80,共5页 Power System Technology
关键词 局部放电 特征提取 分形理论 模式识别 高电压绝缘技术 partial discharge feature extraction fractal theory pattern recognition high voltage insulation engineering
  • 相关文献

参考文献26

二级参考文献75

  • 1谈克雄,朱德恒,王振远,曾冬松.基于人工神经网络的局部放电识别[J].高电压技术,1996,22(1):21-24. 被引量:16
  • 2谈克雄,李福祺.局部放电识别用的几种人工神经网络[J].高电压技术,1996,22(4):3-7. 被引量:27
  • 3尹志德.用人工神经网络对电机绝缘模型放电的模式识别研究[M].北京:清华大学,1998.. 被引量:3
  • 4王振远.大电机放电监测与模型放电识别研究[M].北京:清华大学,1996.. 被引量:2
  • 5赵秀山 王振远 等.在线监测用电流传感器的研究[J].清华大学学报:自然科学版,1995,35(52). 被引量:12
  • 6成永红.[D].西安:西安交通大学,2000. 被引量:1
  • 7[1] Kreuger F H,et al.Evaluation of discharge damage by fast transient detection and statistical analysis[J].CIGRE Paris 1994,(15):106~110. 被引量:1
  • 8[2] Blackburn T R,et al.Advanced techniques for characterisation of partial discharges in oil-impregnated and gas insulated systems[J].CIGRE Paris,1994,(15):102~105. 被引量:1
  • 9[3] Pompili M,et al.Early stages of negative PD development in dielectric liquids[J].IEEE Trans on D & EI,1995,2(4):602~603. 被引量:1
  • 10[4] Brosche T,et al.Novel characterization of PD signals by real-time measurement of pulse parameters[J].IEEE Trans on D & EI,1999,6(6):51~62. 被引量:1

共引文献491

同被引文献453

引证文献37

二级引证文献435

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部